Dry Lab

Models

Iterative Design-Build-Test-Learn cycles that transformed TRACER from concept to reality

Computational Framework

In Silico Model Development

Computational design guided every stage of TRACER development, from concept to implementation

Key Design Transition: From Dual to Single SynNotch

  • Dual cascade introduced excessive complexity and amplified noise
  • Quantified false positives from basal activity and trafficking kinetics
  • Single SynNotch achieved same goal with cleaner threshold behavior

Initial Concept & Modelling

Built comprehensive in-silico framework to model SynNotch pathway and reduce trial-and-error

Cell-based biosensing for CD147 overexpression detection
Threshold-dependent SynNotch activation system
In-silico modeling before wet-lab testing
Explored design options and anticipated failure points

Leak Suppression & Promoters

Designed constitutive inhibitor to block unintended activation until threshold signaling

Addressed basal 'leaky' activation in SynNotch systems
Modeled 6 constitutive promoters: CAG, CMV, EF1α, U6, PGK, SFFV
Predicted expression strengths before construct synthesis
Optimized stability across mammalian systems

Reporter Selection

Humanized Gaussia luciferase (GLuc) selected for non-invasive monitoring

Minimal immunogenicity with rapid renal clearance (10-20 min)
Previously validated in animal models
Predicted secretion rates via computational framework
Matched detection thresholds to desired assay window

Quantitative Predictions

Parameter scanning identified optimal promoter ranges for fine-tuned behavior

SFFV: 295.6 mM | EF1α: 197.1 mM | CMV: 172.5 mM
CAG: 118.3 mM | PGK: 19.28 mM | U6: 13.9 mM
Explored dose-response curves and activation thresholds
Adjusted design parameters virtually before synthesis

Structural Optimization

AlphaFold modeling guided epitope tag placement without wet-lab iteration

C-terminal 3×FLAG compromised TetR interaction
N-terminal tag preserved binding affinity
Final design: N-terminal 3×FLAG-inhibitor fusion
Avoided costly validation cycles

Dry-Lab Refinement

Continued in-silico refinement during customs delays shortened experimental cycle

All 6 inhibitor variants + SynNotch + reporter finalized
Tested combinations during synthesis delays
Clear parameters ready for wet-lab testing
Effectively shortened experimental timeline

All modeling predictions were validated against literature benchmarks and refined iteratively

Mathematical Models

Differential equations governing TRACER's synthetic biology dynamics

STEP 1 OF 3

Qualitative SynNotch–Inhibitor Model

Minimal model capturing SynNotch receptor dynamics with transcription factor production and negative feedback inhibition

SynTF Production
d[SynTF]dt=kprodkL[SynTF]kL[LSynTF]kact[SynTF]γS[SynTF]\frac{d[\text{SynTF}]}{dt} = k_{\text{prod}} - k_{L}[\text{SynTF}] - k_{-L}[\text{LSynTF}] - k_{\text{act}}[\text{SynTF}] - \gamma_{S}[\text{SynTF}]
  • SynTF produced at constant rate (k_prod)
  • Can bind ligand to form LSynTF (k_L)
  • Activates TF downstream (k_act)
  • Degrades naturally (γ_S)
Ligand-Bound SynTF
d[LSynTF]dt=kL[SynTF]kL[LSynTF]kactL[LSynTF]γL[LSynTF]\frac{d[\text{LSynTF}]}{dt} = k_{L}[\text{SynTF}] - k_{-L}[\text{LSynTF}] - k_{\text{act}_{L}}[\text{LSynTF}] - \gamma_{L}[\text{LSynTF}]
  • Forms from SynTF-ligand binding
  • Activates TF with rate k_act_L
  • Degrades naturally
Free Transcription Factor
KEY
d[TF]dt=kact[SynTF]+kactL[LSynTF]kon[TF][I]+koff[TFI]kdegTF[TF]kbindDNA[TF][DNAfree]+kunbindDNA[DNAbound]\frac{d[\text{TF}]}{dt} = k_{\text{act}}[\text{SynTF}] + k_{\text{act}_{L}}[\text{LSynTF}] - k_{\text{on}}[\text{TF}][I] + k_{\text{off}}[\text{TF}_{I}] - k_{\text{deg}_{\text{TF}}}[\text{TF}] - k_{\text{bind}_{\text{DNA}}}[\text{TF}][\text{DNA}_{\text{free}}] + k_{\text{unbind}_{\text{DNA}}}[\text{DNA}_{\text{bound}}]
  • Produced by activated SynTF/LSynTF
  • Can bind inhibitor forming TF_I
  • Can bind DNA to transcribe downstream genes
TF-Inhibitor Complex
d[TFI]dt=kon[TF][I]koff[TFI]kdegTFI[TFI]\frac{d[\text{TF}_{I}]}{dt} = k_{\text{on}}[\text{TF}][I] - k_{\text{off}}[\text{TF}_{I}] - k_{\text{deg}_{\text{TFI}}}[\text{TF}_{I}]
  • Mass balance of sequestered TF
DNA Binding
d[DNAfree]dt=kbindDNA[TF][DNAfree]+kunbindDNA[DNAbound]\frac{d[\text{DNA}_{\text{free}}]}{dt} = -k_{\text{bind}_{\text{DNA}}}[\text{TF}][\text{DNA}_{\text{free}}] + k_{\text{unbind}_{\text{DNA}}}[\text{DNA}_{\text{bound}}]
d[DNAbound]dt=kbindDNA[TF][DNAfree]kunbindDNA[DNAbound]\frac{d[\text{DNA}_{\text{bound}}]}{dt} = k_{\text{bind}_{\text{DNA}}}[\text{TF}][\text{DNA}_{\text{free}}] - k_{\text{unbind}_{\text{DNA}}}[\text{DNA}_{\text{bound}}]
  • TF binding to promoter sites
mRNA Transcription
d[mRNA1]dt=ktx[DNAbound]kdegmRNA[mRNA1]\frac{d[\text{mRNA}_{1}]}{dt} = k_{\text{tx}}[\text{DNA}_{\text{bound}}] - k_{\text{deg}_{\text{mRNA}}}[\text{mRNA}_{1}]
d[mRNA2]dt=ktx2[mRNA1]kdegmRNA2[mRNA2]\frac{d[\text{mRNA}_{2}]}{dt} = k_{\text{tx}_{2}}[\text{mRNA}_{1}] - k_{\text{deg}_{\text{mRNA}_{2}}}[\text{mRNA}_{2}]
  • Cascade transcription proportional to DNA occupancy
Secondary TF & Inhibitor
d[TF2]dt=ktl2[mRNA2]kdegTF2[TF2]\frac{d[\text{TF}_{2}]}{dt} = k_{\text{tl}_{2}}[\text{mRNA}_{2}] - k_{\text{deg}_{\text{TF}_{2}}}[\text{TF}_{2}]
d[I]dt=kprodkon[TF][I]+koff[TFI]kdegI[I]\frac{d[I]}{dt} = k_{\text{prod}} - k_{\text{on}}[\text{TF}][I] + k_{\text{off}}[\text{TF}_{I}] - k_{\text{deg}_{I}}[I]
  • Translation of second TF
  • Constitutive inhibitor production

Model Interpretation

  • Captures feedback between SynTF, downstream TFs, and inhibitor
  • DNA binding and mRNA production are included but simplified
  • Ligand effects are not explicitly pulsed