Project

Design

Engineering precision through systematic design principles and iterative development methodology

Introduction

Our design philosophy for TRACER is to create living, programmable cells that act as precise sentinels, silent under normal conditions but instantly responsive when they detect true signs of cancer. We treat sensing, processing, and responding as an integrated circuit rather than separate steps, ensuring that the same engineered cell can both report a threat and begin to counter it. Every component is chosen and tuned for modularity, scalability, and safety, so the proof-of-concept we build today can evolve into a clinically relevant theranostic platform without losing its precision or reliability.

PRODUCT ENGINEERING

Engineering Cancer Detection

Pioneering synthetic biology and advanced biosensing technologies for ultra-early, non-invasive cancer relapse detection through innovative biomarker engineering.

CD147

SynNOTCH

Tet-OFF System

Gluc

1

MIT News (2025)

Synthetic biology approach programming immune cells with logic-based circuits

https://news.mit.edu/2025/equipping-living-cells-with-logic-gates-fighting-cancer-0418
2

Xin et al., Sci. Rep. 6:32804 (2016)

CD147/EMMPRIN functions: MMP induction, VEGF-mediated angiogenesis, and MCT1/4 metabolic regulation

https://doi.org/10.1038/srep32804
3

Huang D, Rao D, Jin Q, Lai M, Zhang J, Lai Z, Shen H, Zhong T.

Role of CD147 in the development and diagnosis of hepatocellular carcinoma. Front Immunol.

https://doi.org/10.3389/fimmu.2023.1149931
4

Weidle UH, Scheuer W, Eggle D, Klostermann S, Stockinger H.

Cancer-related issues of CD147. Cancer Genomics Proteomics. 2010 May-Jun;7(3):157-69. PMID: 20551248.

5

Le Floch et al., PNAS 108(40):16663 (2011)

CD147 (Basigin) knockout uncouples MCT1/4, disrupting lactate export and tumor energetics

https://pubmed.ncbi.nlm.nih.gov
6

Agrawal et al., J. Neurosci. 31(2):669 (2011)

EMMPRIN regulates leukocyte trafficking into CNS via MMP activity, and is an Ig-superfamily protein with roles in MMP induction & leukocyte activation

https://doi.org/10.1523/JNEUROSCI.3659-10.2011
7

Toole, Anat Rec. 303(6):1573 (2020)

CD147–hyaluronan axis: CD147 stimulates hyaluronan synthesis; links to cancer stemness, invasiveness, and chemoresistance

https://doi.org/10.1002/ar.24147
8

Bovenzi et al., Biomed Res. Int. 2015:242437 (2015)

Meta-analysis across cancers: high CD147 correlates with worse overall and disease-free survival

https://doi.org/10.1155/2015/242437
9

Li et al., Lancet Gastro&Hepatol. 5(6):548 (2020)

Phase II trial in HCC: adjuvant ¹³¹I-metuximab improved 5-year recurrence-free survival post-hepatectomy (43% vs 22%)

https://doi.org/10.1016/S2468-1253(19)30422-4
10

Ma et al., Asian Pac J Cancer Prev. 16(17):7441 (2015)

Phase IV study: ¹³¹I-metuximab + TACE versus TACE alone in advanced HCC, showing higher 1-year survival and longer time to progression with combination therapy

https://doi.org/10.7314/apjcp.2015.16.17.7441
11

Morsut L, Roybal KT, Xiong X, et al.

Engineering Customized Cell Sensing and Response Programs Using Synthetic Notch Receptors. Cell, 2016;164(4):780-791. PMC.

https://doi.org/10.1016/j.cell.2016.01.012
12

Roybal KT, Rupp LJ, Morsut L, et al.

Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell, 2016;164(4):770-779.

https://doi.org/10.1016/j.cell.2016.09.011
13

Yang Z, Yu Z, Cai Y, Du R, Cai L.

Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Communications Biology, 2020;3:116.

https://doi.org/10.1038/s42003-020-0848-x
14

Song L, Huang Y, Wang Q, et al.

Recent advances in synthetic Notch receptors for biomedical applications. American Journal of Physiology-Cell Physiology, 2025 (advance).

https://doi.org/10.1152/ajpcell.00659.2024
15

Khamaisi B, Hamm A, et al.

Functional Comparison between Endogenous and Synthetic Notch Receptors in Mammalian Cells. ACS Synthetic Biology, 2022. PMC.

https://doi.org/10.1021/acssynbio.2c00247
16

Semeniuk S, Tong A, et al.

Engineering an αCD206-synNotch Receptor: Insights into Modular Receptor Design. ACS Synthetic Biology, 2024.

https://doi.org/10.1021/acssynbio.4c00149
17

Garibyan M, et al.

Engineering programmable material-to-cell pathways via synNotch activation by ECM-derived ligands. Nature Communications, 2024;15: 1-14.

https://doi.org/10.1038/s41467-024-50126-1
18

Liu B, Neumann M, et al.

Enhancement of cell-specific transgene expression from a Tet-Off system. BMC Molecular Biology, 2008. PMC.

https://doi.org/10.1002/jgm.1178
19

Pedone E, et al.

A tunable dual-input system for on-demand dynamic gene regulation combining Tet system and protein destabilization. Nature Communications, 2019.

https://doi.org/10.1038/s41467-019-12329-9
20

Delerue F, White M, Ittner LM, et al.

Inducible, tightly regulated and non-leaky gene expression in mice using Tet-Off systems. Transgenic Research, 2014;23(2):225-233.

https://doi.org/10.1007/s11248-013-9767-7
21

Ottina E, et al.

DNA-binding of the Tet-transactivator curtails antigen-specific responses: lessons from the TRE-tight system. Nature Communications, 2017.

https://doi.org/10.1038/s41467-017-01022-4
22

JAX

Introduction to Tet expression systems (overview of Tet-Off, Tet-On designs, tTA/TRE mechanism)

https://www.jax.org
23

Tannous, B. A., Kim, D.-E., Fernandez, J. L., Weissleder, R., & Breakefield, X. O. (2009)

Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nature Protocols, 4(4), 582–591.

https://doi.org/10.1038/nprot.2009.28
24

Chung, E., Yamashita, H., Au, P., Tannous, B. A., Fukumura, D., & Jain, R. K. (2009)

Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PLoS ONE, 4(12), e8316.

https://doi.org/10.1371/journal.pone.0008316
25

Wurdinger, T., Badr, C. E., Pike, L., de Kleine, R., Weissleder, R., Breakefield, X. O., & Tannous, B. A. (2008)

A secreted luciferase for ex vivo monitoring of in vivo processes. Nature Methods, 5(2), 171–177.

https://doi.org/10.1038/nmeth.1177
26

Neefjes, M., van de Plassche, M. A. C., Broekgaarden, M., et al. (2021)

Reporter gene comparison demonstrates interference of secreted Gaussia luciferase in complex body fluids. Scientific Reports, 11, 991.

https://doi.org/10.1038/s41598-020-80451-6
27

Gedi, V., Swaminathan, R., & Ng, S. M. (2024)

Advanced bioluminescence reporter with engineered Gaussia luciferase. Biosensors, 14(11), 528.

https://doi.org/10.3390/bios14110528
28

Maani, Z., Taheri, M., & Alibolandi, M. (2022)

Rational design of an anti-cancer peptide inhibiting CD147/CypA interaction. Frontiers in Oncology, 12, 947951.

https://doi.org/10.3389/fonc.2022.947951
29

Frontiers Editorial Office. (2023)

CD147: An integral and potential molecule to abrogate in cancer. Frontiers in Oncology, 13, 1238051.

https://doi.org/10.3389/fonc.2023.1238051
30

WO Patent No. 2023000170A1. (2023)

CD147 antibodies and CD147-CAR T cells. World Intellectual Property Organization.

https://patents.google.com/patent/WO2023000170A1/en