- 1.
Abdur Razzak, S., Bahar, K., Islam, K. M. O., Haniffa, A. K., Faruque, M. O., Hossain, S. M. Z., & Hossain, M. M. (2024). Microalgae cultivation in photobioreactors: Sustainable solutions for a greener future. Green Chemical Engineering, 5(4), 418–439. https://doi.org/10.1016/j.gce.2023.10.004
- 2.
Allen, E. J., & Nelson, E. W. (1910). On the Artificial Culture of Marine Plankton Organisms. Journal of the Marine Biological Association of the United Kingdom, 8(5), 421–474. https://doi.org/10.1017/S0025315400073690
- 3.
Anderie, I., Schulz, I., & Schmid, A. (2007). Characterization of the C-terminal ER membrane anchor of PTP1B. Experimental Cell Research, 313(15), 3189–3197. https://doi.org/10.1016/j.yexcr.2007.05.025
- 4.
Anwar, M., Wang, J., Li, J., Altaf, M. M., & Hu, Z. (2024). MYB Transcriptional Factors Affects Upstream and Downstream MEP Pathway and Triterpenoid Biosynthesis in Chlamydomonas reinhardtii. Processes, 12(3), 487. https://doi.org/10.3390/pr12030487
- 5.
Arias, A., Feijoo, G., & Moreira, M. T. (2024). Macroalgae as a sustainable biostimulant for crop production according to techno-economic and environmental criteria. Sustainable Production and Consumption, 48, 169–180. https://doi.org/10.1016/j.spc.2024.05.019
- 6.
Brumfield, K. M., Laborde ,Susan M., & and Moroney, J. V. (2017). A model for the ergosterol biosynthetic pathway in Chlamydomonas reinhardtii. European Journal of Phycology, 52(1), 64–74. https://doi.org/10.1080/09670262.2016.1225318
- 7.
Cagney, M. H., & O’Neill, E. C. (2024). Strategies for producing high value small molecules in microalgae. Plant Physiology and Biochemistry, 214, 108942. https://doi.org/10.1016/j.plaphy.2024.108942
- 8.
Chatzivasileiou, A. O., Ward, V., Edgar, S. M., & Stephanopoulos, G. (2019). Two-step pathway for isoprenoid synthesis. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 506–511. https://doi.org/10.1073/pnas.1812935116
- 9.
CheBI. (2017, August 11). Chemical Entities of Biological Interest—Sterol. https://www.ebi.ac.uk/chebi/beta/CHEBI:15889
- 10.
Chung, J.-J., Yang, H., & Li, M. (2003). Genome-wide Analyses of Carboxyl-terminal Sequences*. Molecular & Cellular Proteomics, 2(3), 173–181. https://doi.org/10.1074/mcp.M300008-MCP200
- 11.
Commault, A. S., Kuzhiumparambil, U., Herdean, A., Fabris, M., Jaramillo-Madrid, A. C., Abbriano, R. M., Ralph, P. J., & Pernice, M. (2021). Methyl Jasmonate and Methyl-β-Cyclodextrin Individually Boost Triterpenoid Biosynthesis in Chlamydomonas Reinhardtii UVM4. Pharmaceuticals, 14(2), Article 2. https://doi.org/10.3390/ph14020125
- 12.
Concha, C., Cañas, R., Macuer, J., Torres, M. J., Herrada, A. A., Jamett, F., & Ibáñez, C. (2017). Disease Prevention: An Opportunity to Expand Edible Plant-Based Vaccines? Vaccines, 5(2), 14. https://doi.org/10.3390/vaccines5020014
- 13.
D’Adamo, S., Schiano di Visconte, G., Lowe, G., Szaub-Newton, J., Beacham, T., Landels, A., Allen, M. J., Spicer, A., & Matthijs, M. (2019). Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production. Plant Biotechnology Journal, 17(1), 75–87. https://doi.org/10.1111/pbi.12948
- 14.
Dahiya, D., & Nigam, P. S. (2021). An overview of three biocatalysts of pharmaceutical importance synthesized by microbial cultures. AIMS Microbiology, 7(2), 124–137. https://doi.org/10.3934/microbiol.2021009
- 15.
de la Fuente, M., Lombardero, L., Gómez-González, A., Solari, C., Angulo-Barturen, I., Acera, A., Vecino, E., Astigarraga, E., & Barreda-Gómez, G. (2021). Enzyme Therapy: Current Challenges and Future Perspectives. International Journal of Molecular Sciences, 22(17), 9181. https://doi.org/10.3390/ijms22179181
- 16.
Donova, M. V. (2023). Current Trends and Perspectives in Microbial Bioconversions of Steroids. In C. Barreiro & J.-L. Barredo (Eds), Microbial Steroids: Methods and Protocols (pp. 3–21). Springer US. https://doi.org/10.1007/978-1-0716-3385-4_1
- 17.
du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
- 18.
Dupont, S., Fleurat-Lessard, P., Cruz, R. G., Lafarge, C., Grangeteau, C., Yahou, F., Gerbeau-Pissot, P., Abrahão Júnior, O., Gervais, P., Simon-Plas, F., Cayot, P., & Beney, L. (2021). Antioxidant Properties of Ergosterol and Its Role in Yeast Resistance to Oxidation. Antioxidants (Basel, Switzerland), 10(7), 1024. https://doi.org/10.3390/antiox10071024
- 19.
Dupuis, S., & Merchant, S. S. (2023). Chlamydomonas reinhardtii: A model for photosynthesis and so much more. Nature Methods, 20(10), 1441–1442. https://doi.org/10.1038/s41592-023-02023-6
- 20.
Edlund, A. M., Jones, J., Lewis, R., & Quinn, J. C. (2018). Economic feasibility and environmental impact of synthetic spider silk production from escherichia coli. New Biotechnology, 42, 12–18. https://doi.org/10.1016/j.nbt.2017.12.006
- 21.
Estévez, J. M., Cantero, A., Reindl, A., Reichler, S., & León, P. (2001). 1-Deoxy-d-xylulose-5-phosphate Synthase, a Limiting Enzyme for Plastidic Isoprenoid Biosynthesis in Plants*. Journal of Biological Chemistry, 276(25), 22901–22909. https://doi.org/10.1074/jbc.M100854200
- 22.
Fernández-Cabezón, L., Galán, B., & García, J. L. (2018). New Insights on Steroid Biotechnology. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00958
- 23.
Gomes, D., Rodrigues, L. R., & Rodrigues, J. L. (2022). Perspectives on the design of microbial cell factories to produce prenylflavonoids. International Journal of Food Microbiology, 367, 109588. https://doi.org/10.1016/j.ijfoodmicro.2022.109588
- 24.
Gong, Y., Hu, H., Gao, Y., Xu, X., & Gao, H. (2011). Microalgae as platforms for production of recombinant proteins and valuable compounds: Progress and prospects. Journal of Industrial Microbiology and Biotechnology, 38(12), 1879–1890. https://doi.org/10.1007/s10295-011-1032-6
- 25.
Guan, R., Wang, M., Guan, Z., Jin, C.-Y., Lin, W., Ji, X.-J., & Wei, Y. (2020). Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 8, 588255. https://doi.org/10.3389/fbioe.2020.588255
- 26.
He, X., Huai, W., Tie, C., Liu, Y., & Zhang, B. (2000). Breeding of high ergosterol-producing yeast strains. Journal of Industrial Microbiology and Biotechnology, 25(1), 39–44. https://doi.org/10.1038/sj.jim.7000004
- 27.
Health Canada. (2010, August 16). Enzymes used in Food Processing [Backgrounders;policies]. https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/food-additives/enzymes-used-processing.html
- 28.
Hickman, D. (2016, January 4). Microalgae – Underestimated All-Rounders. ChemistryViews. https://www.chemistryviews.org/details/ezine/8639701/Microalgae__Underestimated_All-Rounders/
- 29.
Hoshino, Y., & Gaucher, E. A. (2021). Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proceedings of the National Academy of Sciences, 118(25), e2101276118. https://doi.org/10.1073/pnas.2101276118
- 30.
Hu, Z., He, B., Ma, L., Sun, Y., Niu, Y., & Zeng, B. (2017a). Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae. Indian Journal of Microbiology, 57(3), 270–277. https://doi.org/10.1007/s12088-017-0657-1
- 31.
Hu, Z., He, B., Ma, L., Sun, Y., Niu, Y., & Zeng, B. (2017b). Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae. Indian Journal of Microbiology, 57(3), 270–277. https://doi.org/10.1007/s12088-017-0657-1
- 32.
Huang, X., Gan, L., He, Z., Jiang, G., & He, T. (2024). Bacterial Pigments as a Promising Alternative to Synthetic Colorants: From Fundamentals to Applications. Journal of Microbiology and Biotechnology, 34(11), 2153–2165. https://doi.org/10.4014/jmb.2404.04018
- 33.
Jaramillo-Madrid, A. C., Abbriano, R., Ashworth, J., Fabris, M., Pernice, M., & Ralph, P. J. (2020). Overexpression of Key Sterol Pathway Enzymes in Two Model Marine Diatoms Alters Sterol Profiles in Phaeodactylum tricornutum. Pharmaceuticals, 13(12), 481. https://doi.org/10.3390/ph13120481
- 34.
Jiji, M. G., Ninan, M. A., Thomas, V. P., & Thomas, B. T. (2023). Edible microalgae: Potential candidate for developing edible vaccines. Vegetos (Bareilly, India), 1–6. https://doi.org/10.1007/s42535-023-00636-y
- 35.
Kajikawa, M., Kinohira, S., Ando, A., Shimoyama, M., Kato, M., & Fukuzawa, H. (2015). Accumulation of Squalene in a Microalga Chlamydomonas reinhardtii by Genetic Modification of Squalene Synthase and Squalene Epoxidase Genes. PLOS ONE, 10(3), e0120446. https://doi.org/10.1371/journal.pone.0120446
- 36.
Kang, M.-K., Kim, J.-Y., Choi, Y.-I., Hu, L., Yang, C., Jin, Z., Park, Y. J., Kim, S.-U., & Kim, S.-M. (2022). Enhanced metabolic flux of methylerythritol phosphate (MEP) pathway by overexpression of Ginkgo biloba 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate Reductase 1 (GbHDR1) gene in poplar. Applied Biological Chemistry, 65(1), 50. https://doi.org/10.1186/s13765-022-00718-6
- 37.
Kaushal, N., Verma, D., Alok, A., Pandey, A., & Singh, K. (2023). Heterologous expression of Chlorophytum borivilianum Squalene epoxidase in tobacco modulates stigmasterol production and alters vegetative and reproductive growth. Plant Cell Reports, 42(5), 909–919. https://doi.org/10.1007/s00299-023-03000-1
- 38.
Kuzuyama, T., & Seto, H. (2012). Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 88(3), 41–52. https://doi.org/10.2183/pjab.88.41
- 39.
Lee, S., & Poulter, C. D. (2008). Cloning, Solubilization, and Characterization of Squalene Synthase from Thermosynechococcus elongatus BP-1. Journal of Bacteriology, 190(11), 3808–3816. https://doi.org/10.1128/JB.01939-07
- 40.
Lewandowski, I., Lippe, M., Montoya, J. C., Dickhöfer, U., Langenberger, G., Pucher, J., Schließmann, U., Schmid-Staiger, U., Derwenskus, F., & Lippert, C. (2018). Primary Production. In I. Lewandowski (Ed.), Bioeconomy: Shaping the Transition to a Sustainable, Biobased Economy (pp. 97–178). Springer International Publishing. https://doi.org/10.1007/978-3-319-68152-8_6
- 41.
Li, J., & Zhang, Y. (2014). Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways. Applied Microbiology and Biotechnology, 98(7), 3081–3089. https://doi.org/10.1007/s00253-013-5461-1
- 42.
Lohr, M., Schwender, J., & Polle, J. E. W. (2012). Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Science: An International Journal of Experimental Plant Biology, 185–186, 9–22. https://doi.org/10.1016/j.plantsci.2011.07.018
- 43.
Mahmood, T., Hussain, N., Shahbaz, A., Mulla, S. I., Iqbal, H. M. N., & Bilal, M. (2023). Sustainable production of biofuels from the algae-derived biomass. Bioprocess and Biosystems Engineering, 46(8), 1077–1097. https://doi.org/10.1007/s00449-022-02796-8
- 44.
Miller, M. B., Haubrich, B. A., Wang, Q., Snell, W. J., & Nes, W. D. (2012). Evolutionarily conserved Δ25(27)-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii. Journal of Lipid Research, 53(8), 1636–1645. https://doi.org/10.1194/jlr.M027482
- 45.
Molino, J. V. D., Carvalho, J. C. M. de, & Mayfield, S. P. (2018). Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii. PLOS ONE, 13(2), e0192433. https://doi.org/10.1371/journal.pone.0192433
- 46.
Morelli, L., Patwari, P., Pruckner, F., Bastide, M., & Fabris, M. (2025). Specific light-regime adaptations, terpenoid profiles and engineering potential in ecologically diverse Phaeodactylum tricornutum strains. Algal Research, 86, 103920. https://doi.org/10.1016/j.algal.2025.103920
- 47.
Morikawa, T., Uraguchi, Y., Sanda, S., Nakagawa, S., & Sawayama, S. (2018). Overexpression of DnaJ-Like Chaperone Enhances Carotenoid Synthesis in Chlamydomonas reinhardtii. Applied Biochemistry and Biotechnology, 184(1), 80–91. https://doi.org/10.1007/s12010-017-2521-5
- 48.
Nakayama, Y., Fujiu, K., Sokabe, M., & Yoshimura, K. (2007). Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5883–5888. https://doi.org/10.1073/pnas.0609996104
- 49.
Neupert, J., Karcher, D., & Bock, R. (2009). Generation of Chlamydomonas strains that efficiently express nuclear transgenes. The Plant Journal: For Cell and Molecular Biology, 57(6), 1140–1150. https://doi.org/10.1111/j.1365-313X.2008.03746.x
- 50.
Niraula, A., Danesh, A., Merindol, N., Meddeb-Mouelhi, F., & Desgagné-Penix, I. (2025a). Aromatic Amino Acids: Exploring Microalgae as a Potential Biofactory. BioTech, 14(1), 6. https://doi.org/10.3390/biotech14010006
- 51.
Niraula, A., Danesh, A., Merindol, N., Meddeb-Mouelhi, F., & Desgagné-Penix, I. (2025b). Aromatic Amino Acids: Exploring Microalgae as a Potential Biofactory. BioTech, 14(1), 6. https://doi.org/10.3390/biotech14010006
- 52.
Otto, B., Beuchel, C., Liers, C., Reisser, W., Harms, H., & Schlosser, D. (2015). Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants. FEMS Microbiology Letters, 362(11), fnv072. https://doi.org/10.1093/femsle/fnv072
- 53.
Peter, A. P., Koyande, A. K., Chew, K. W., Ho, S.-H., Chen, W.-H., Chang, J.-S., Krishnamoorthy, R., Banat, F., & Show, P. L. (2022). Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renewable and Sustainable Energy Reviews, 154, 111852. https://doi.org/10.1016/j.rser.2021.111852
- 54.
Qin, Z., Zhang, Y., Liu, S., Zeng, W., Zhou, J., & Xu, S. (2024). Combining Metabolic Engineering and Lipid Droplet Assembly to Achieve Campesterol Overproduction in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 72(9), 4814–4824. https://doi.org/10.1021/acs.jafc.3c09764
- 55.
Rajput, B. K., Ikram, S. F., & Tripathi, B. N. (2024). Harnessing the potential of microalgae for the production of monoclonal antibodies and other recombinant proteins. Protoplasma, 261(6), 1105–1125. https://doi.org/10.1007/s00709-024-01967-6
- 56.
Randhir, A., Laird, D. W., Maker, G., Trengove, R., & Moheimani, N. R. (2020). Microalgae: A potential sustainable commercial source of sterols. Algal Research, 46, 101772. https://doi.org/10.1016/j.algal.2019.101772
- 57.
Rangsinth, P., Sharika, R., Pattarachotanant, N., Duangjan, C., Wongwan, C., Sillapachaiyaporn, C., Nilkhet, S., Wongsirojkul, N., Prasansuklab, A., Tencomnao, T., Leung, G. P.-H., & Chuchawankul, S. (2023). Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods, 12(13), 2529. https://doi.org/10.3390/foods12132529
- 58.
Sánchez-Quintero, Á., Fernandes, S. C. M., & Beigbeder, J.-B. (2023). Overview of microalgae and cyanobacteria-based biostimulants produced from wastewater and CO2 streams towards sustainable agriculture: A review. Microbiological Research, 277, 127505. https://doi.org/10.1016/j.micres.2023.127505
- 59.
Silkina, A., Emran, M. A., Turner, S., & Tang, K. W. (2024). Using Microalgae to Convert Brewery Carbon Gas Emissions into Valuable Bioproducts. Energies, 17(23), 6125. https://doi.org/10.3390/en17236125
- 60.
Singh, K., & Mehta, S. (2016). The clinical development process for a novel preventive vaccine: An overview. Journal of Postgraduate Medicine, 62(1), 4–11. https://doi.org/10.4103/0022-3859.173187
- 61.
Srivastava, R., Deng, Y., Shah, S., Rao, A. G., & Howell, S. H. (2013). BINDING PROTEIN Is a Master Regulator of the Endoplasmic Reticulum Stress Sensor/Transducer bZIP28 in Arabidopsis. The Plant Cell, 25(4), 1416–1429. https://doi.org/10.1105/tpc.113.110684
- 62.
Sun, Z.-J., Lian, J.-Z., Zhu, L., Jiang, Y.-Q., Li, G.-S., Xue, H.-L., Wu, M.-B., Yang, L.-R., & Lin, J.-P. (2021). Combined Biosynthetic Pathway Engineering and Storage Pool Expansion for High-Level Production of Ergosterol in Industrial Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.681666
- 63.
Uchida, H., Sumimoto, K., Ferriols, V. M. E., Imou, K., Saga, K., Furuhashi, K., Matsunaga, S., & Okada, S. (2015). Isolation and Characterization of Two Squalene Epoxidase Genes from Botryococcus braunii, Race B. PLoS ONE, 10(4), e0122649. https://doi.org/10.1371/journal.pone.0122649
- 64.
Velasquez, A. (2025, March 31). Living Ink Raises $3M to Diversify Feedstocks for Bio-Based Pigments. Sourcing Journal. https://sourcingjournal.com/denim/denim-sustainability/living-ink-algae-black-raises-3-million-bio-based-pigments-1234742406/
- 65.
Voshall, A., Christie, N. T. M., Rose, S. L., Khasin, M., Van Etten, J. L., Markham, J. E., Riekhof, W. R., & Nickerson, K. W. (2021a). Sterol Biosynthesis in Four Green Algae: A Bioinformatic Analysis of the Ergosterol Versus Phytosterol Decision Point. Journal of Phycology, 57(4), 1199–1211. https://doi.org/10.1111/jpy.13164
- 66.
Voshall, A., Christie, N. T. M., Rose, S. L., Khasin, M., Van Etten, J. L., Markham, J. E., Riekhof, W. R., & Nickerson, K. W. (2021b). Sterol Biosynthesis in Four Green Algae: A Bioinformatic Analysis of the Ergosterol Versus Phytosterol Decision Point. Journal of Phycology, 57(4), 1199–1211. https://doi.org/10.1111/jpy.13164
- 67.
Wang, J., Anwar, M., Li, J., Dan, L., Jia, B., & Hu, Z. (2025). Engineering a complete mevalonate pathway in Chlamydomonas reinhardtii for enhanced isoprenoid production. Algal Research, 88, 103987. https://doi.org/10.1016/j.algal.2025.103987
- 68.
Wang, Q., Ma, Y., Sun, F., Wang, K., Ma, J., Zhu, B., Cao, K., Shao, Y., Cui, Y., Zhang, H., Wu, Y., Meng, C., & Gao, Z. (2025). Development and research progress of microalgae as a production platform for antimicrobial peptides. Journal of Applied Phycology, 37(3), 1659–1677. https://doi.org/10.1007/s10811-025-03472-6
- 69.
Whittall, D. R., Baker, K. V., Breitling, R., & Takano, E. (2021). Host Systems for the Production of Recombinant Spider Silk. Trends in Biotechnology, 39(6), 560–573. https://doi.org/10.1016/j.tibtech.2020.09.007
- 70.
Wichmann, J., Eggert, A., Elbourne, L. D. H., Paulsen, I. T., Lauersen, K. J., & Kruse, O. (2022). Farnesyl pyrophosphate compartmentalization in the green microalga Chlamydomonas reinhardtii during heterologous (E)-α-bisabolene production. Microbial Cell Factories, 21(1), 190. https://doi.org/10.1186/s12934-022-01910-5
- 71.
Wong, P. Y., Mal, J., Sandak, A., Luo, L., Jian, J., & Pradhan, N. (2024). Advances in microbial self-healing concrete: A critical review of mechanisms, developments, and future directions. The Science of the Total Environment, 947, 174553. https://doi.org/10.1016/j.scitotenv.2024.174553
- 72.
Xu, L., Wang, D., Chen, J., Li, B., Li, Q., Liu, P., Qin, Y., Dai, Z., Fan, F., & Zhang, X. (2022). Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Metabolic Engineering, 70, 115–128. https://doi.org/10.1016/j.ymben.2022.01.013
- 73.
Yahya, R. Z., Wellman, G. B., Overmans, S., & Lauersen, K. J. (2023). Engineered production of isoprene from the model green microalga Chlamydomonas reinhardtii. Metabolic Engineering Communications, 16, e00221. https://doi.org/10.1016/j.mec.2023.e00221
- 74.
Yan, N., Fan, C., Chen, Y., & Hu, Z. (2016). The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. International Journal of Molecular Sciences, 17(6), 962. https://doi.org/10.3390/ijms17060962
- 75.
Yan, N., Marschner, P., Cao, W., Zuo, C., & Qin, W. (2015). Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3(4), 316–323. https://doi.org/10.1016/j.iswcr.2015.11.003
- 76.
Zhang, D.-H., Jiang, L.-X., Li, N., Yu, X., Zhao, P., Li, T., & Xu, J.-W. (2017). Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi. Journal of Agricultural and Food Chemistry, 65(23), 4683–4690. https://doi.org/10.1021/acs.jafc.7b00629
- 77.
Zhang, Z., Tan, Y., Wang, W., Bai, W., Fan, J., Huang, J., Wan, M., & Li, Y. (2019). Efficient heterotrophic cultivation of Chlamydomonas reinhardtii. Journal of Applied Phycology, 31(3), 1545–1554. https://doi.org/10.1007/s10811-018-1666-0
- 78.
Ziganshina, E. E., Bulynina, S. S., & Ziganshin, A. M. (2022). Growth Characteristics of Chlorella sorokiniana in a Photobioreactor during the Utilization of Different Forms of Nitrogen at Various Temperatures. Plants, 11(8), Article 8. https://doi.org/10.3390/plants11081086
- 79.
Zlomuzica, A., Plank, L., & Dere, E. (2022). A new path to mental disorders: Through gap junction channels and hemichannels. Neuroscience & Biobehavioral Reviews, 142, 104877. https://doi.org/10.1016/j.neubiorev.2022.104877