Acknowledgements | iGEM Hamburg 2025

Acknowledgements

We would like to express our deepest gratitude to everyone who supported the iGEM Team Hamburg 2025 throughout the development of our project DeathCapTrap.

First and foremost, we thank our Principal Investigator Prof. Dr. Michael Kolbe and Secondary PI Dr. Mirko Himmel for their continuous guidance, scientific input, and encouragement. We are also sincerely grateful to our Advisors, Boy and Lennert, for their commitment, mentorship, and invaluable feedback during every stage of our work.

We would like to thank our collaborating and supporting institutions: University of Hamburg (UHH), Deutsches Elektronen-Synchrotron (DESY), Centre for Structural Systems Biology (CSSB), Hub for Crossdisciplinary Learning (HCL UHH), Helmholtz Centre for Infection Research (HZI), the Liver Lab of the UKE, and the AG Grünewald (CSSB) for providing laboratory space, scientific infrastructure, and interdisciplinary support.

Our heartfelt thanks also go to the students of our international synthetic biology summer school—Annika, Ida, Emiko, Lilli, and Matyas—whose enthusiasm, dedication, and assistance in the lab made a significant contribution to our project.

We are immensely grateful to the experts who shared their knowledge and advice to help us refine both the scientific and ethical / safety aspects of our work: Jun.-Prof. Dr. Clara Schöder, Prof. Dr. Florian Eyer, Prof. Dr. Alejandro Rojas-Fernandez, Prof. Dr. Dominik Begerow, Dr. Waldemar Schäfer, Prof. Dr. Ario de Marco, Bettina Haberl, Dr. Dorothee Schwinge, Dr. Barbara Kutscher, Daniela Klug, Dr. Stefanie Iwersen-Bergmann, Prof. Dr. Roderich Süßmuth, and Dr. Jörg Kemkowski.

We further thank our software and computational biology experts Dr. Wolfgang Lugmayr, Dr. Frank Schluenzen, and Dr. Klara Kropivšek for their support in structural modeling, data analysis, and implementation of our dry-lab pipeline.

Finally, we express our sincere appreciation to our sponsors and partners: Becton Dickinson (BD), Thermo Fisher Scientific, Ratiolab, SnapGene, TeamGantt, Carl Roth, NanoHelix, ElabNext, Integrated DNA Technologies (IDT), and Twist Bioscience for their generous contributions, licenses, and product support that made our research possible.

This project was realized through the combined effort of many passionate people and institutions. We are truly grateful for their belief in our vision and for helping us bring DeathCapTrap to life.


Alpha-Amanitin Sources

  1. Tian, Z., Li, Y., Guo, C., Liu, K. & Xie, J. Epidemiological and clinical characteristics of severe poisonous mushroom poisoning in children in Yunnan Province: A retrospective analysis of 23 cases from 2020 to 2022. Medicine (Baltimore) 104, e12237380 (2025). Link
  2. NCBI. Amanita phalloides (Death Cap). In: StatPearls (2024). Link
  3. Karlson-Stiber, C. & Persson, H. Cytotoxic fungi—an overview. In: Handbook of Clinical Toxicology of Animal Venoms and Poisons (Elsevier, 2024). Link
  4. Shan, J. et al. Recent advances in mushroom poisoning: Epidemiology, clinical features, and management. Toxicon 205, 23–35 (2022). Link
  5. Moldenhauer, H. et al. α-Amanitin: Mechanism of inhibition of RNA polymerase II. J. Biol. Chem. 294, 67125–67133 (2018). PDF
  6. Lindell, T. J. et al. Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science 173, 1239–1243 (1971). PMID: 16495352

Nanobody Sources

  1. Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).
  2. Jin, B., Odongo, S., Radwanska, M. & Magez, S. NANOBODIES®: A Review of Generation, Diagnostics and Therapeutics. Int. J. Mol. Sci. 24, 5994 (2023).
  3. Bensaude, O. Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity? Transcription 2, 103–108 (2011).
  4. Peyvandi, F. et al. Caplacizumab for Acquired Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 374, 511–522 (2016).
  5. Chertkova, A. O. et al. Robust and bright genetically encoded fluorescent markers for highlighting structures and compartments in mammalian cells. bioRxiv (2020).
  6. Lu, J. et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun. Signal. 19, 60 (2021).
  7. Kim, S.-K. et al. Repeated aspartate tags improving extracellular production of E. coli L-asparaginase II. Enzyme Microb. Technol. 79–80, 49–54 (2015).
  8. Sandomenico, A., Sivaccumar, J. P. & Ruvo, M. Evolution of E. coli expression system in producing antibody fragments. Int. J. Mol. Sci. 21 (2020).
  9. Xia, X.-X. et al. Comparison of the extracellular proteomes of E. coli B and K-12 strains. Proteomics 8, 2089–2103 (2008).

Lipid Nanoparticle Sources

  1. Nsairat, H. et al. Liposomes: structure, composition, types and clinical applications. Heliyon 8, e09394 (2022).
  2. Eugster, R. & Luciani, P. Liposomes: Bridging the gap from lab to pharmaceuticals. Curr. Opin. Colloid Interface Sci. 75, 101875 (2025).
  3. Lombardo, D. & Kiselev, M. Methods of liposome preparation. Pharmaceutics 14, 543 (2022).
  4. Mui, B., Chow, L. & Hope, M. Extrusion technique to generate liposomes of defined size. Methods Enzymol. 367, 3–14 (2003).
  5. Shah, V. et al. Liposomes produced by microfluidics and extrusion. Nanomedicine: NBM 18, 146–156 (2019).
  6. Hosseini-Kharat, M., Bremmel, K. & Prestidge, C. Why do lipid nanoparticles target the liver? Mol. Ther. Methods Clin. Dev. 33 (2025).
  7. Paunovska, K. et al. Requirements for APOE & LDLR in LNP delivery. Nano Lett. 22, 10025–10033 (2022).
  8. Paramshetti, S. et al. In vivo dynamics of liposomes. Life Sci. 346, 122616 (2024).
  9. Budavari, B. et al. Long-term shelf-life liposomes. J. Mol. Liq. 394, 123756 (2024).
  10. Chatterjee, S. et al. Endosomal escape: bottleneck for LNP therapeutics. PNAS 121, e2307800120 (2023).

Drylab / Computational Design Sources

  1. CASP14 competition website. (Accessed 18 Sep 2025) Link
  2. Nobel Prize for Chemistry 2024 – Advanced Information (Accessed 7 Sep 2025). PDF
  3. Watson, J. L. et al. RFdiffusion. Nature 620, 1089–1100 (2023).
  4. Krishna, R. et al. RoseTTAFold All-Atom. Science 384, eadl2528 (2024).
  5. Bennett, N. R. et al. Antibody design with RFdiffusion. bioRxiv (2025).
  6. Nanohelix.ai (Accessed 7 Sep 2025). Link
  7. Meng, E. C. et al. UCSF ChimeraX. Protein Sci. 32, e4792 (2023).
  8. Bugnon, M. et al. SwissDock 2024. Nucleic Acids Res. 52, W324–W332 (2024).
  9. Chai Discovery Team et al. Zero-shot antibody design. bioRxiv (2025).
  10. Cho, Y. et al. Boltzdesign1. bioRxiv (2025).
  11. SMILES to structure tool (Accessed 21 Sep 2025). Link
  12. ChEMBL α-Amanitin entry (Accessed 21 Sep 2025).
  13. Abramson, J. et al. AlphaFold 3. Nature 630, 493–500 (2024).
  14. Passaro, S. et al. Boltz-2. bioRxiv (2025).
  15. Thumuluri, V. et al. NetSolP. Bioinformatics 38, 941–946 (2022).
  16. Bhandari, B. K. et al. Solubility-weighted index. Bioinformatics 36, 4691–4698 (2020).
  17. Zalewski, M. et al. Aggrescan4D. Protein Sci. 33, e5180 (2024).
  18. Lobanov, M. Y. et al. Amino acid composition insights. Int. J. Mol. Sci. 25, 13680 (2024).
  19. Dauparas, J. et al. LigandMPNN. Nat. Methods 22, 717–723 (2025).
  20. Neurosnap AI (Accessed 2 Oct 2025). Link
  21. MolProbity server (Accessed 2 Oct 2025). Link
  22. Team Hamburg GitLab repository. Link
  23. EMBL-EBI plDDT resource (Accessed 2 Oct 2025).
  24. EMBL-EBI ipTM resource (Accessed 2 Oct 2025).
  25. iGEM Registry – In silico designed α-amanitin binding protein.

Engineering Sources

  1. Kim, S.-K. et al. Repeated aspartate tags & L-asparaginase II. (2015).
  2. Chertkova, A. O. et al. Fluorescent markers. (2020).
  3. Xia, X.-X. et al. Extracellular proteomes. (2008).
  4. Cho, Y. et al. Boltzdesign1. (2025).
  5. Dauparas, J. et al. LigandMPNN. (2025).
  6. Bugnon, M. et al. SwissDock 2024. (2024).
  7. Team Hamburg GitLab repository.

Human Practice Sources

  1. Jun.-Prof. Dr. Clara Schoeder – Lab Website
  2. Prof. Dr. Florian Eyer – Toxikologie MRI
  3. Prof. Dr. Dominik Begerow – Univ. Hamburg
  4. Prof. Dr. Ario de Marco – Univ. Nova Gorica
  5. Klara Kropivšek – Personal communication (2025).
  6. Dr. Alejandro Rojas-Fernandez – Berking Theranostics
  7. Dr. Waldemar Schäfer – UKE Immunology
  8. Bettina Haberl – Toxikologie MRI
  9. Dr. Dorothee Schwinge – UKE HCTI
  10. Dr. Julia Offe – Science Slam
  11. Prof. Dr. Michael Kolbe – HZI
  12. Dr. Mirko Himmel – SIPRI
  13. Prof. Dr. Roderich Süßmuth – TU Berlin
  14. Daniela Klug – BÜHLMANN Labs
  15. Heidelberg Pharma AG – Website

Institutions, Sponsors & Project Sources

  1. University of Hamburg (UHH). Link
  2. Deutsches Elektronen-Synchrotron (DESY). Link
  3. Centre for Structural Systems Biology (CSSB). Link
  4. Hub for Crossdisciplinary Learning (HCL / ISA) UHH. Link
  5. Ratiolab GmbH. Link
  6. SnapGene. Link
  7. Thermo Fisher Scientific. Link
  8. Carl Roth GmbH. Link
  9. TeamGantt. Link
  10. ElabNext (SciSure). Link
  11. NanoHelix. Link
  12. Helmholtz Centre for Infection Research (HZI). Link
  13. Integrated DNA Technologies (IDT). Link
  14. Twist Bioscience. Link
  15. Becton Dickinson (BD). Link
  16. LiverLab UKE. Link
  17. Maxwell HPC (DESY). Link
  18. Schülerforschungszentrum Hamburg (SFZ). Link
  19. DeathCapTrap – MIN Faculty UHH. Link
  20. HISS 2025 Program (DESY). Link
  21. BioSpektrum iGEM Beiträge 2025. Link
  22. BFH European Meet-Up 2025. Link
Acknowledgements | iGEM Hamburg 2025 Comprehensive acknowledgements, contributors, institutions, sponsors and curated scientific source lists (alpha-amanitin, nanobodies, lipid nanoparticles, dry lab computational design, engineering success, human practices) for the iGEM Hamburg 2025 project DeathCapTrap. pretty