[1] Krishani, M., Shin, W. Y., Suhaimi, H., & Sambudi, N. S. (2023). Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels, 9(2), 100. https://doi.org/10.3390/gels9020100
[2] Liu, C., Xia, Z., & Czernuszka, J. T. (2007). Design and Development of Three-Dimensional Scaffolds for Tissue Engineering. Chemical Engineering Research and Design, 85(7), 1051–1064. https://doi.org/10.1205/cherd06196
[3] Guastaferro, M., Baldino, L., Reverchon, E., & Cardea, S. (2021). Production of Porous Agarose-Based Structures: Freeze-Drying vs. Supercritical CO2 Drying. Gels, 7(4), 198. https://doi.org/10.3390/gels7040198
[4] Millipore Sigma. (n.d.). Agarose: Properties and Research Applications. Millipore Sigma. Retrieved May 5, 2025, from https://www.sigmaaldrich.com/CA/en/products/chemistry-and-biochemicals/biochemicals/agarose?srsltid=AfmBOor0-clvHaNQABFQvAFMHQvZe6ia9ek_M-hBtjlM1gj3PMx43-jv
[5] Speranza, B., Corbo, M. R., Campaniello, D., Altieri, C., Sinigaglia, M., & Bevilacqua, A. (2020). Biofilm formation by potentially probiotic Saccharomyces cerevisiae strains. Food Microbiology, 87, 103393. https://doi.org/10.1016/j.fm.2019.103393
[6] Nozaka, S., Furukawa, S., Sasaki, M., Hirayama, S., Ogihara, H., & Morinaga, Y. (2014). Manganese Ion Increases LAB-yeast Mixed-species Biofilm Formation. Bioscience of Microbiota, Food and Health, 33(2), 79–84. https://doi.org/10.12938/bmfh.33.79
[7] Emami Moghaddam, S. A., Harun, R., Mokhtar, M. N., & Zakaria, R. (2018). Potential of Zeolite and Algae in Biomass Immobilization. BioMed Research International, 2018, 6563196. https://doi.org/10.1155/2018/6563196