[1] Lan F, Li J, Miao W et al. GZMK-expressing CD8+ T cells promote recurrent airway inflammatory diseases.
Nature 638, 490–498 (2025).
[2] Zhao T, Zhang H, Guo Y, Zhang Q, Hua G, Lu H, Hou Q, Liu H & Fan Z. Granzyme K cleaves the nucleosome assembly protein SET to induce single-stranded DNA nicks of target cells.
Cell Death & Differentiation 14, 489–499 (2007).
[3] Hink-Schauer C, Estébanez-Perpiñá E, Wilharm E, Fuentes-Prior P, Klinkert W, Bode W, & Jenne D. E. The 2.2A crystal structure of human pro-granzyme K reveals a rigid zymogen with unusual features.
The Journal of Biological Chemistry, 277 (2002).
[4] Bouwman A. C, van Daalen K. R, Crnko S, Ten Broeke T, & Bovenschen N. Intracellular and Extracellular Roles of Granzyme K.
Frontiers in Immunology (2021).
[5] Bovenschen N, Quadir R, van den Berg A. L, Brenkman A. B, Vandenberghe I, Devreese B, Joore J & Kummer J. A. Granzyme K displays highly restricted substrate specificity that only partially overlaps with granzyme A.
Journal of Biological Chemistry 284, 3504–3512 (2009).
[6] Wilharm E, Parry M. A, Friebel R, Tschesche H, Matschiner G, Sommerhoff C. P. & Jenne D. E. Generation of catalytically active granzyme K from Escherichia coli inclusion bodies and identification of efficient granzyme K inhibitors in human plasma.
Journal of Biological Chemistry 274, 27331–27337 (1999).
[7] Dotiwala F, Fellay I, Filgueira L, Martinvalet D, Lieberman J, & Walch M. A High Yield and Cost-efficient Expression System of Human Granzymes in Mammalian Cells.
Journal of Visualized Experiments : JoVE (2015).
[8] Watson J. L, Juergens D, Bennett N. R. et al. De novo design of protein structure and function with RFdiffusion.
Nature 620, 1089–1100 (2023).
[9] Dauparas J, Anishchenko I, Bennett N. et al. Robust deep learning–based protein sequence design using ProteinMPNN.
Science 378, 49–56 (2022).
[10] Cao L, Coventry B, Goreshnik I, et al. Design of protein-binding proteins from the target structure alone.
Nature 605, 551–560 (2022).
[11] Bennett NR, Coventry B, Goreshnik I, et al. Improving de novo protein binder design with deep learning.
Nature Communications 14, 2625 (2023).
[12] Li Y, Duan Z, Li Z, Xue W. Data and AI-driven synthetic binding protein discovery.
Trends Pharmacol Sci 46, 132–144 (2024).
[13] Vázquez Torres S, Leung PJY, Venkatesh P, et al. De novo design of high-affinity binders of bioactive helical peptides.
Nature 626, 435–442 (2024).
[14] Glögl M, Krishnakumar A, Ragotte RJ, et al. Target-conditioned diffusion generates potent TNFR superfamily antagonists and agonists.
Science 386, 1154–1161 (2024).
[15] Bennett NR, Watson JL, Ragotte RJ, et al. Atomically accurate de novo design of antibodies with RFdiffusion.
Preprint. bioRxiv (2025).
[16] Marchand A, Van Hall-Beauvais AK, Correia BE. Computational design of novel protein–protein interactions – An overview on methodological approaches and applications.
Current Opinion in Structural Biology 74, 102370 (2022).
[17] Yang W, Hicks DR, Ghosh A, et al. Design of high-affinity binders to immune modulating receptors for cancer immunotherapy.
Nature Communications 16, 2001 (2025).
[18] Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold.
Nature 596, 583–589 (2021).
[19] Kortemme T. De novo protein design—From new structures to programmable functions.
Cell 187, 526–544 (2022).
[20] Bonadio A, Shifman JM. Computational design and experimental optimization of protein binders with prospects for biomedical applications.
Protein Eng Des Sel 34, 34 (2021)
[21] Lu Q, Yu S, Wang S, et al. Development of a colloidal gold immunochromatographic assay utilizing dual-antibody sandwich method for detecting Orientia tsutsugamushi.
Front Microbiol 15, 1521015 (2025)
[22] Ye L, Xu L, Kuang H, Xu X, Xu C. Colloidal gold-based immunochromatographic biosensor for quantitative detection of S100B in serum samples.
Nanoscale Horiz 8, 1253–1261 (2023).
[23] Jiang Z, Qin Y, Zhang L, et al. Development and application of a colloidal-gold immunochromatographic strip for detecting Getah virus antibodies.
Appl Microbiol Biotechnol 108, 355 (2024).
[24] J. Dauparas, et al. "Robust deep learning-based protein sequence design using ProteinMPNN.
Science 378, 49–56 (2022).
[25] Josh Abramson, et al. "Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Nature 630, 493–500 (2024).
[26] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning.
arXiv:2501.12948
[27] Zhihong Shao, et al. DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models.
arXiv:2402.03300
[28] Sarah Alamdari, et al. "Protein generation with evolutionary diffusion: sequence is all you need.
bioRxiv 2023.09.11.556673.
[29] Friesner RA, et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy.
J. Med. Chem. 2004, 47, 7, 1739–1749
[30] Sherman W, et al. "Novel Procedure for Modeling Ligand/Receptor Induced Fit Effects.
J. Med. Chem. 2006, 49, 2, 534–553
[31] Bowers KJ, et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters.
Proceedings of the ACM/IEEE Conference on Supercomputing (SC06) (2006). Pages 84 - es
[32] Halgren TA. Identifying and Characterizing Binding Sites and Assessing Druggability.
J Chem Inf Model. 2009 Feb;49(2):377–89.
[33] Rapp C, Carlson HA. "Relative Binding Affinities in Congeneric Series.
J Chem Inf Model. 2011 Sep 26;51(9):2082–9.
[34] Wang L, et al. Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery.
Advanced Science (2024). https://doi.org/10.1002/advs.202403998
[35] Watson JL, et al. "De novo design of protein structure and function with RFdiffusion.
Nature 620, 1089–1100 (2023).
[36] Jumper J, et al. "Highly accurate protein structure prediction with AlphaFold.
Nature 596, 583–589 (2021).
[37] Varadi M, et al. AlphaFold Protein Structure Database in 2024.
Nucleic Acids Res. 2024 Jan 5;52(D1):D368–D375.
[38] Alford RF, et al. The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design.
J. Chem. Theory Comput. 2017, 13, 6, 3031–3048