Hero background

Results

Here, you'll find the results of our project.

Overview


Our results encompass four major areas of investigation: the engineered function of our bacterial system, fluorescent protein expression in the gut environment, transwell system validation, and L-DOPA production measurements. Select a section below to explore our detailed results.

Engineered Function

FPs in the Gut

Transwell System

L-DOPA Production

  1. Engler, C., & Marillonnet, S. (2014). Golden Gate Cloning. In S. Valla & R. Lale (Eds.), DNA Cloning and Assembly Methods (Vol. 1116, pp. 119–131). Humana Press. https://doi.org/10.1007/978-1-62703-764-8_9
  2. Galloway, N. R., Toutkoushian, H., Nune, M., Bose, N., & Momany, C. (2013). Rapid Cloning For Protein Crystallography Using Type IIS Restriction Enzymes. Crystal Growth & Design, 13(7), 2833–2839. https://doi.org/10.1021/cg400171z
  3. Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLoS ONE, 6(2), e16765. https://doi.org/10.1371/journal.pone.0016765
  4. Valenzuela-Ortega, M., & French, C. (2021). Joint universal modular plasmids (JUMP): A flexible vector platform for synthetic biology. Synthetic Biology, 6(1), ysab003. https://doi.org/10.1093/synbio/ysab003
  5. Kostylev, M., Otwell, A. E., Richardson, R. E., & Suzuki, Y. (2015). Cloning Should Be Simple: Escherichia coli DH5α-Mediated Assembly of Multiple DNA Fragments with Short End Homologies. PLOS ONE, 10(9), e0137466. https://doi.org/10.1371/journal.pone.0137466
  6. Xia, H., Chen, H., Cheng, X., Yin, M., Yao, X., Ma, J., Huang, M., Chen, G., & Liu, H. (2022). Zebrafish: An efficient vertebrate model for understanding the role of gut microbiota. Molecular Medicine, 28(1), 161. https://doi.org/10.1186/s10020-022-00579-1
  7. Guzman, L. M., Belin, D., Carson, M. J., & Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. Journal of Bacteriology, 177(14), 4121–4130. https://doi.org/10.1128/jb.177.14.4121-4130.1995
  8. Zhang, Y., Zhang, J., Hara, H., Kato, I., & Inouye, M. (2005). Insights into the mRNA Cleavage Mechanism by MazF, an mRNA Interferase. Journal of Biological Chemistry, 280(5), 3143–3150. https://doi.org/10.1074/jbc.M411811200
  9. iGEM Registry of Standard Biological Parts. Part:BBa_K3036005. Accessed October 3rd 2025. https://parts.igem.org/Part:BBa_K3036005
  10. Soto-Aceves, M. P., Diggle, S. P., & Greenberg, E. P. (2023). Microbial Primer: LuxR-LuxI 5: Quorum Sensing: This article is part of the Microbial Primer collection. Microbiology, 169(9). https://doi.org/10.1099/mic.0.001343
  11. Bhat, E. H., Henard, J. M., Lee, S. A., McHalffey, D., Ravulapati, M. S., Rogers, E. V., Yu, L., Skiles, D., & Henard, C. A. (2024). Construction of a broad-host-range Anderson promoter series and particulate methane monooxygenase promoter variants expand the methanotroph genetic toolbox. Synthetic and Systems Biotechnology, 9(2), 250–258. https://doi.org/10.1016/j.synbio.2024.02.003
  12. iGEM Squirrel Guangzhou Wiki. Parts. Accessed October 3rd 2025. https://2024.igem.wiki/squirrel-guangzhou/
  13. Zhao, A., Sun, J., & Liu, Y. (2023). Understanding bacterial biofilms: From definition to treatment strategies. Frontiers in Cellular and Infection Microbiology, 13, 1137947. https://doi.org/10.3389/fcimb.2023.1137947
  14. iGEM Registry of Standard Biological Parts. Part:BBa_K3036005. Accessed October 3rd 2025. https://parts.igem.org/Part:BBa_K3036005
  15. McMackin, E. A. W., Corley, J. M., Karash, S., Marden, J., Wolfgang, M. C., & Yahr, T. L. (2021). Cautionary Notes on the Use of Arabinose- and Rhamnose-Inducible Expression Vectors in Pseudomonas aeruginosa. Journal of Bacteriology, 203(16). https://doi.org/10.1128/JB.00224-21
  16. Román, R., Lončar, N., Casablancas, A., Fraaije, M. W., & Gonzalez, G. (2020). High-level production of industrially relevant oxidases by a two-stage fed-batch approach: Overcoming catabolite repression in arabinose-inducible Escherichia coli systems. Applied Microbiology and Biotechnology, 104(12), 5337–5345. https://doi.org/10.1007/s00253-020-10622-y
  17. iGEM Registry of Standard Biological Parts. Part:BBa_I0500. Accessed October 6th 2025. https://parts.igem.org/Part:BBa_I0500
  18. Sullivan, C., Matty, M.A., Jurczyszak, D., Gabor, K.A., Millard, P.J., Tobin, D.M., & Kim, C.H. (2017). Infectious disease models in zebrafish. In Methods in Cell Biology (Vol. 138, pp. 101–136). Elsevier. https://doi.org/10.1016/bs.mcb.2016.10.005
  19. Saraceni, P. R., Romero, A., Figueras, A., & Novoa, B. (2016). Establishment of Infection Models in Zebrafish Larvae (Danio rerio) to Study the Pathogenesis of Aeromonas hydrophila. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01219
  20. Morales, R. A., Rabahi, S., Diaz, O. E., Salloum, Y., Kern, B. C., Westling, M., Luo, X., Parigi, S. M., Monasterio, G., Das, S., Hernández, P. P., & Villablanca, E. J. (2022). Interleukin-10 regulates goblet cell numbers through Notch signaling in the developing zebrafish intestine. Mucosal Immunology, 15(5), 940–951. https://doi.org/10.1038/s41385-022-00546-3
  21. Flores, E. M., Nguyen, A. T., Odem, M. A., Eisenhoffer, G. T., & Krachler, A. M. (2020). The zebrafish as a model for gastrointestinal tract–microbe interactions. Cellular Microbiology, 22(3). https://doi.org/10.1111/cmi.13152
  22. Xia, H., Chen, H., Cheng, X., Yin, M., Yao, X., Ma, J., Huang, M., Chen, G., & Liu, H. (2022). Zebrafish: An efficient vertebrate model for understanding role of gut microbiota. Molecular Medicine, 28(1), 161. https://doi.org/10.1186/s10020-022-00579-1
  23. Ye, L., Bae, M., Cassilly, C. D., Jabba, S. V., Thorpe, D. W., Martin, A. M., Lu, H.-Y., Wang, J., Thompson, J. D., Lickwar, C. R., Poss, K. D., Keating, D. J., Jordt, S.-E., Clardy, J., Liddle, R. A., & Rawls, J. F. (2021). Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host & Microbe, 29(2), 179-196.e9. https://doi.org/10.1016/j.chom.2020.11.011
  24. Smith, T. J., Sundarraman, D., Melancon, E., Desban, L., Parthasarathy, R., & Guillemin, K. (2023). A mucin-regulated adhesin determines the spatial organization and inflammatory character of a bacterial symbiont in the vertebrate gut. Cell Host & Microbe, 31(8), 1371-1385.e6. https://doi.org/10.1016/j.chom.2023.07.003
  25. Lawson, N. D., & Weinstein, B. M. (2002). In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. Developmental Biology, 248(2), 307–318. https://doi.org/10.1006/dbio.2002.0711
  26. Proulx, K., Lu, A., & Sumanas, S. (2010). Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. Developmental Biology, 348(1), 34–46. https://doi.org/10.1016/j.ydbio.2010.08.036
  27. Shinoda, H., Shannon, M., & Nagai, T. (2018). Fluorescent Proteins for Investigating Biological Events in Acidic Environments. International Journal of Molecular Sciences, 19(6), 1548. https://doi.org/10.3390/ijms19061548
  28. Richard, J. P., Melikov, K., Brooks, H., Prevot, P., Lebleu, B., & Chernomordik, L. V. (2005). Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. The Journal of biological chemistry, 280(15), 15300–15306. https://doi.org/10.1074/jbc.M401604200
  29. Tünnemann, G., Martin, R. M., Haupt, S., Patsch, C., Edenhofer, F., & Cardoso, M. C. (2006). Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB journal, 20(11), 1775–1784. https://doi.org/10.1096/fj.05-5523com
  30. Verweij, F. J., Revenu, C., Arras, G., Dingli, F., Loew, D., Pegtel, D. M., Follain, G., Allio, G., Goetz, J. G., Zimmermann, P., Herbomel, P., Del Bene, F., Raposo, G., & Van Niel, G. (2019). Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo. Developmental Cell, 48(4), 573-589.e4. https://doi.org/10.1016/j.devcel.2019.01.004
  31. Suzuki, M., Suzuki, S., Matsui, M., Hiraki, Y., Kawano, F., & Shibayama, K. (2013). Genome Sequence of a Strain of the Human Pathogenic Bacterium Pseudomonas alcaligenes That Caused Bloodstream Infection. Genome announcements, 1(5), e00919-13. https://doi.org/10.1128/genomeA.00919-13
  32. James, S., Reddy, V., & Beato, M.R. (2024). National Library of Medicine. Neuroanatomy, Substantia Nigra. Accessed October 3rd 2025. https://www.ncbi.nlm.nih.gov/books/NBK536995/
  33. Triarhou, L. National Library of Medicine. Dopamine and Parkinson's Disease. Accessed October 3rd 2025. https://www.ncbi.nlm.nih.gov/books/NBK6271/
  34. Salat, D., & Tolosa, E. (2013). Levodopa in the Treatment of Parkinson's Disease: Current Status and New Developments. Journal of Parkinson's Disease, 3(3), 255–269. https://doi.org/10.3233/JPD-130186
  35. Beckers, M., Bloem, B. R., & Verbeek, M. M. (2022). Mechanisms of peripheral levodopa resistance in Parkinson's disease. Npj Parkinson's Disease, 8(1), 56. https://doi.org/10.1038/s41531-022-00321-y
  36. Noack, C., Schroeder, C., Heusser, K., & Lipp, A. (2014). Cardiovascular effects of levodopa in Parkinson's disease. Parkinsonism & Related Disorders, 20(8), 815–818. https://doi.org/10.1016/j.parkreldis.2014.04.007
  37. Stednitz, S. J., Freshner, B., Shelton, S., Shen, T., Black, D., & Gahtan, E. (2015). Selective toxicity of L-DOPA to dopamine transporter-expressing neurons and locomotor behavior in zebrafish larvae. Neurotoxicology and Teratology, 52, 51–56. https://doi.org/10.1016/j.ntt.2015.11.001
  38. Kwon, D. K., Kwatra, M., Wang, J., & Ko, H. S. (2022). Levodopa-Induced Dyskinesia in Parkinson's Disease: Pathogenesis and Emerging Treatment Strategies. Cells, 11(23), 3736. https://doi.org/10.3390/cells11233736
  39. Kumagai, H., Katayama, T., Koyanagi, T., & Suzuki, H. (2023). Research overview of L-DOPA production using a bacterial enzyme, tyrosine phenol-lyase. Proceedings of the Japan Academy Series B, 99(3), 75–101. https://doi.org/10.2183/pjab.99.006
  40. Fordjour, E., Adipah, F. K., Zhou, S., Du, G., & Zhou, J. (2019). Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of l-DOPA from d-glucose. Microbial Cell Factories, 18(1). https://doi.org/10.1186/s12934-019-1085-z
  41. Xu, D.-Y., Chen, J.-Y., & Yang, Z. (2012). Use of cross-linked tyrosinase aggregates as catalyst for synthesis of L-DOPA. Biochemical Engineering Journal, 63, 88-94. https://doi.org/10.1016/j.bej.2011.11.009
  42. Gore, M., & Burggren, W. W. (2012). Cardiac and Metabolic Physiology of Early Larval Zebrafish (Danio rerio) Reflects Parental Swimming Stamina. Frontiers in Physiology, 3. https://doi.org/10.3389/fphys.2012.00035
  43. Verweij, F. J., Revenu, C., Arras, G., Dingli, F., Loew, D., Pegtel, D. M., Follain, G., Allio, G., Goetz, J. G., Zimmermann, P., Herbomel, P., Del Bene, F., Raposo, G., & Van Niel, G. (2019). Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo. Developmental Cell, 48(4), 573-589.e4. https://doi.org/10.1016/j.devcel.2019.01.004
  44. Gaur, H., Pullaguri, N., Nema, S., Purushothaman, S., Bhargava, Y., & Bhargava, A. (2018). ZebraPace: An Open-Source Method for Cardiac-Rhythm Estimation in Untethered Zebrafish Larvae. Zebrafish, 15(3), 254–262. https://doi.org/10.1089/zeb.2017.1545
  45. Gierten, J., Pylatiuk, C., Hammouda, O. T., Schock, C., Stegmaier, J., Wittbrodt, J., Gehrig, J., & Loosli, F. (2020). Automated high-throughput heartbeat quantification in medaka and zebrafish embryos under physiological conditions. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58563-w
  46. Han, H., Zeng, W., Du, G., Chen, J., & Zhou, J. (2020). Site-directed mutagenesis to improve the thermostability of tyrosine phenol-lyase. Journal of Biotechnology, 310, 6–12. https://doi.org/10.1016/j.jbiotec.2020.01.005
Sponsors