Engineering

Our engineering approach follows the iterative DBTL (Design-Build-Test-Learn) process to optimize synthetic biology solutions through systematic refinement and validation.

Overview

Our engineering approach focuses on three key components that work together to create a robust and efficient system. Through multiple cycles of refinement, we've developed predictive models and experimental validations that enhance the performance and reliability of our biological constructs.

The DBTL process allows us to systematically improve our designs based on empirical data and computational predictions, leading to innovative solutions for real-world challenges. Each component undergoes rigorous testing and optimization to ensure maximum efficiency and stability.

Engineering Components

SCR-D Structure Prediction

Computational modeling of protein structures with limited sequence information

Aptamer-Controlled SCR

Genetic regulation modulated by aptamer binding

Development of Tadpole

Software tool for automatised semi-rational design

Determine SCR-D's Structure - Cycles

Cycle 1: SCR-D Structure Prediction

Structure Prediction with Bioinformatics Tools and Coevolutionary Analysis

Cycle 2: Coevolutionary Analysis of SCR

Manual Conservation Analysis, Automation, and Key Element Identification

Creation of an aptamer-controlled SCR - Cycles

Cycle 1: SCR element

SCR-D as Switch Candidate, Selecting New SCR Element, and Choosing DIO2 SECIS

Cycle 2: Aptamer

Selecting Theophylline Aptamer and Choosing Theo-ON-5 Variant

Cycle 3: SCR riboswitch

Joining all the parts together to design a switch, using the model and the software.

Development of Tadpole - Cycles

Cycle 1: Algorithm Refinement

Brute-Force Search, Genetic Algorithm (GA), and Clustering

Cycle 2: Deployment and Accessibility

Python Scripts, Streamlit Interface, Render Deployment, and Docker

DBTL Visualization

Scroll down to see the iterative DBTL process or use the navigation arrows

       

References

       
             
  1. Wang, X., Yu, S., Lou, E., Tan, Y.-L., & Tan, Z.-J. (2023). RNA 3D structure prediction: Progress and perspective. Molecules, 28, 5532. https://doi.org/10.3390/molecules28145532
  2.          
  3. Washietl, S., Pedersen, J. S., Korbel, J. O., Gruber, A. R., & F. P. A. (2005). RNAz: A program to detect functionally important RNA secondary structures in multiple alignments. Nucleic Acids Research, 33(10), 3209–3218. https://doi.org/10.1093/nar/gki633
  4.          
  5. Mariotti, M., Lobanov, A. V., Manta, B., Santes, M. E., Morales, P. E., & Gladyshev, V. N. (2016). Lokiarchaeota marks the transition between the archaeal and eukaryotic selenocysteine encoding systems. Molecular Biology and Evolution, 33(9), 2441–2453. https://doi.org/10.1093/molbev/msw122
  6.          
  7. Lorenz, R., Bernhart, S. H., zu Siederdissen, C. H., et al. (2011). Viennarna package 2.0. Algorithms for Molecular Biology, 6(1), 26. https://doi.org/10.1186/1748-7188-6-26
  8.          
  9. Mishler, D. M., & Gallivan, J. P. (2014). A family of synthetic riboswitches adopts a kinetic trapping mechanism. Nucleic Acids Research, 42(10), 6753–6761. https://doi.org/10.1093/nar/gku262
  10.          
  11. Touat-Hamici, Z., Bulteau, A.-L., Bianga, J., Lobanov, A. V., & Gladyshev, V. N. (2018). Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines. Biochimica et Biophysica Acta (BBA) - General Subjects, 1862(11), 2493–2505. https://doi.org/10.1016/j.bbagen.2018.04.012
  12.          
  13. Jenison, R. D., Gill, S. C., Pardi, A., & Polisky, B. (1994). High-resolution molecular discrimination by rna. Science, 263(5152), 1425–1429. https://doi.org/10.1126/science.7510417
  14.          
  15. Human Metabolome Database. (2025, June 8). Hmdb0001889: Theophylline. https://www.hmdb.ca/metabolites/HMDB0001889
  16.          
  17. Tang, W., Hu, J. H., & Liu, D. R. (2017). Aptazyme-embedded guide rnas enable ligandresponsive genome editing and transcriptional activation. Nature Communications, 8(1), 15939. https://doi.org/10.1038/ncomms15939
  18.          
  19. Lynch, S. A., Desai, S. K., Sajja, H. K., & Gallivan, J. P. (2007). A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chemistry & Biology, 14(2), 173–184. https://doi.org/10.1016/j.chembiol.2006.12.008
  20.          
  21. Anzalone, A. V., Lin, A. J., Zairis, S., Rabadan, R., & Cornish, V. W. (2016). Reprogramming eukaryotic translation with ligand-responsive synthetic rna switches. Nature Methods, 13(10), 989–995. https://doi.org/10.1038/nmeth.3807
  22.          
  23. Menichelli, E., Lam, B. J., Wang, Y., et al. (2022). Discovery of small molecules that target a tertiary-structured rna. Proceedings of the National Academy of Sciences, 119(48), e2213117119. https://www.pnas.org/doi/10.1073/pnas.2213117119
  24.          
  25. Anzalone, A. V., et al. (2006). Engineered RNA reporters for gene expression in living cells. Chemistry & Biology, 13(12), 1259-1267. https://doi.org/10.1016/j.chembiol.2006.12.008
  26.          
  27. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
  28.          
  29. Streamlit Inc. (2024). Streamlit: Turn data scripts into shareable web apps (Version 1.35). https://streamlit.io
  30.        
     
Iteration 1 of 3