Overview
Our engineering approach focuses on three key components that work together to create a robust and efficient system. Through multiple cycles of refinement, we've developed predictive models and experimental validations that enhance the performance and reliability of our biological constructs.
The DBTL process allows us to systematically improve our designs based on empirical data and computational predictions, leading to innovative solutions for real-world challenges. Each component undergoes rigorous testing and optimization to ensure maximum efficiency and stability.
Engineering Components
SCR-D Structure Prediction
Computational modeling of protein structures with limited sequence information
Aptamer-Controlled SCR
Genetic regulation modulated by aptamer binding
Development of Tadpole
Software tool for automatised semi-rational design
Determine SCR-D's Structure - Cycles
Cycle 1: SCR-D Structure Prediction
Structure Prediction with Bioinformatics Tools and Coevolutionary Analysis
Cycle 2: Coevolutionary Analysis of SCR
Manual Conservation Analysis, Automation, and Key Element Identification
Creation of an aptamer-controlled SCR - Cycles
Cycle 1: SCR element
SCR-D as Switch Candidate, Selecting New SCR Element, and Choosing DIO2 SECIS
Cycle 2: Aptamer
Selecting Theophylline Aptamer and Choosing Theo-ON-5 Variant
Cycle 3: SCR riboswitch
Joining all the parts together to design a switch, using the model and the software.
Development of Tadpole - Cycles
Cycle 1: Algorithm Refinement
Brute-Force Search, Genetic Algorithm (GA), and Clustering
Cycle 2: Deployment and Accessibility
Python Scripts, Streamlit Interface, Render Deployment, and Docker
DBTL Visualization
Scroll down to see the iterative DBTL process or use the navigation arrows
References
- Wang, X., Yu, S., Lou, E., Tan, Y.-L., & Tan, Z.-J. (2023). RNA 3D structure prediction: Progress and perspective. Molecules, 28, 5532. https://doi.org/10.3390/molecules28145532
- Washietl, S., Pedersen, J. S., Korbel, J. O., Gruber, A. R., & F. P. A. (2005). RNAz: A program to detect functionally important RNA secondary structures in multiple alignments. Nucleic Acids Research, 33(10), 3209–3218. https://doi.org/10.1093/nar/gki633
- Mariotti, M., Lobanov, A. V., Manta, B., Santes, M. E., Morales, P. E., & Gladyshev, V. N. (2016). Lokiarchaeota marks the transition between the archaeal and eukaryotic selenocysteine encoding systems. Molecular Biology and Evolution, 33(9), 2441–2453. https://doi.org/10.1093/molbev/msw122
- Lorenz, R., Bernhart, S. H., zu Siederdissen, C. H., et al. (2011). Viennarna package 2.0. Algorithms for Molecular Biology, 6(1), 26. https://doi.org/10.1186/1748-7188-6-26
- Mishler, D. M., & Gallivan, J. P. (2014). A family of synthetic riboswitches adopts a kinetic trapping mechanism. Nucleic Acids Research, 42(10), 6753–6761. https://doi.org/10.1093/nar/gku262
- Touat-Hamici, Z., Bulteau, A.-L., Bianga, J., Lobanov, A. V., & Gladyshev, V. N. (2018). Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines. Biochimica et Biophysica Acta (BBA) - General Subjects, 1862(11), 2493–2505. https://doi.org/10.1016/j.bbagen.2018.04.012
- Jenison, R. D., Gill, S. C., Pardi, A., & Polisky, B. (1994). High-resolution molecular discrimination by rna. Science, 263(5152), 1425–1429. https://doi.org/10.1126/science.7510417
- Human Metabolome Database. (2025, June 8). Hmdb0001889: Theophylline. https://www.hmdb.ca/metabolites/HMDB0001889
- Tang, W., Hu, J. H., & Liu, D. R. (2017). Aptazyme-embedded guide rnas enable ligandresponsive genome editing and transcriptional activation. Nature Communications, 8(1), 15939. https://doi.org/10.1038/ncomms15939
- Lynch, S. A., Desai, S. K., Sajja, H. K., & Gallivan, J. P. (2007). A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chemistry & Biology, 14(2), 173–184. https://doi.org/10.1016/j.chembiol.2006.12.008
- Anzalone, A. V., Lin, A. J., Zairis, S., Rabadan, R., & Cornish, V. W. (2016). Reprogramming eukaryotic translation with ligand-responsive synthetic rna switches. Nature Methods, 13(10), 989–995. https://doi.org/10.1038/nmeth.3807
- Menichelli, E., Lam, B. J., Wang, Y., et al. (2022). Discovery of small molecules that target a tertiary-structured rna. Proceedings of the National Academy of Sciences, 119(48), e2213117119. https://www.pnas.org/doi/10.1073/pnas.2213117119
- Anzalone, A. V., et al. (2006). Engineered RNA reporters for gene expression in living cells. Chemistry & Biology, 13(12), 1259-1267. https://doi.org/10.1016/j.chembiol.2006.12.008
- Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
- Streamlit Inc. (2024). Streamlit: Turn data scripts into shareable web apps (Version 1.35). https://streamlit.io