Project Engineering

Project Engineering

DESIGN BUILD TEST LEARN iGEM Engineering Cycle

References:

Engineering Cycle:

LAB:

  1. iGEM. Design Stage [Internet]. Igem.org. 2025 [cited 2025 Oct 1]. Available from: https://technology.igem.org/engineering/design
  2. iGEM. Build Stage [Internet]. Igem.org. 2025 [cited 2025 Oct 1]. Available from: https://technology.igem.org/engineering/build
  3. iGEM. Test Stage [Internet]. Igem.org. 2025 [cited 2025 Oct 1]. Available from: https://technology.igem.org/engineering/test
  4. iGEM. Learn Stage [Internet]. Igem.org. 2025 [cited 2025 Oct 1]. Available from: https://technology.igem.org/engineering/learn
  5. Green Alexander A, Silver Pamela A, Collins James J, Yin P. Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell. 2014 Nov;159(4):925–39.
  6. McSweeney MA, Zhang Y, Styczynski MP. Short Activators and Repressors of RNA Toehold Switches. ACS Synthetic Biology. 2023 Feb 21;12(3):681–8.
  7. Team:Exeter/Toehold Design - 2015.igem.org [Internet]. Igem.org. 2015. Available from: https://2015.igem.org/Team:Exeter/Toehold_Design
  8. M. E. Fornace, J. Huang, C. T. Newman, N. J. Porubsky, M. B. Pierce, N. A. Pierce. NUPACK: analysis and design of nucleic acid structures, devices, and systems. ChemRxiv, 2022.
  9. J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M. Dirks, N. A. Pierce. NUPACK: analysis and design of nucleic acid systems. J Comput Chem, 32:170–173, 2011. (pdf)
  10. B. R. Wolfe, N. J. Porubsky, J. N. Zadeh, R. M. Dirks, and N. A. Pierce. Constrained multistate sequence design for nucleic acid reaction pathway engineering. J Am Chem Soc, 139:3134-3144, 2017. (pdf, supp info)
  11. B. R. Wolfe and N. A. Pierce. Sequence design for a test tube of interacting nucleic acid strands. ACS Synth Bio, 4:1086-1100, 2015. (pdf, supp info, supp tests)
  12. Hoang Trung Chau T et al. Developments of Riboswitches and Toehold Switches for Molecular Detection—Biosensing and Molecular Diagnostics. International Journal of Molecular Sciences [Internet]. 2020 Jan 1;21(9):3192;1-20. Available from: https://www.mdpi.com/1422-0067/21/9/3192/htm
  13. Zhou P et al. Cyclic chain displacement amplification-based dual-miRNA detection: a triple-line lateral flow strip for the diagnosis of lung cancer. Chemical Communications [Internet]. 2021 Jan 1 [cited 2025 Sep 30];57(92):12301–4. Available from: https://pubs.rsc.org/en/content/articlelanding/2021/cc/d1cc05442b
  14. Sun H et al. A novel CRISPR/Cas13a biosensing platform comprising dual hairpin probe and traditional lateral flow assays. Sensors and Actuators B: Chemical [Internet]. 2024 Oct 9;423:136752; . Available from: https://www.sciencedirect.com/science/article/abs/pii/S0925400524014825
  15. Yan ZF, Feng CQ, Zhou JQ, Huang QS, Chen XQ, Xia W, et al. Complete degradation of PET waste using a thermophilic microbe-enzyme system. International journal of biological macromolecules. 2024 Mar 1;260:129538–8.
  16. Wei R, Oeser T, Schmidt J, Meier R, Barth M, Then J, et al. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnology and Bioengineering. 2016 Feb 4;113(8):1658–65.
  17. Then J, Wei R, Oeser T, Barth M, Belisário-Ferrari MR, Schmidt J, et al. Ca2+and Mg2+binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases fromThermobifida fusca. Biotechnology Journal. 2015 Jan 19;10(4):592–8.
  18. Huang D, Zhang L, Sun Y. Rational Design of Disulfide Bridges in BbPETaseCD for Enhancing the Enzymatic Performance in PET Degradation. Molecules. 2023 Apr 17;28(8):3528–8.
  19. Barth M, Honak A, Oeser T, Wei R, Belisário-Ferrari MR, Then J, et al. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnology Journal. 2016 Jun 21;11(8):1082–7.
  20. Tropak MB, Yonekawa S, Karumuthil-Melethil S, Thompson P, Wakarchuk W, Gray SJ, et al. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo. Molecular Therapy - Methods & Clinical Development [Internet]. 2016;3:15057. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774620/
  21. Zhang H, Guan W, Zhou J. Advances in the Diagnosis of Latent Tuberculosis Infection. Infection and Drug Resistance. 2025 Jan 1;Volume 18:483–93
  22. Price C, Nguyen AD. Latent Tuberculosis [Internet]. PubMed. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK599527/
  23. Zhu Y, Lai J, Yang X, Wang S, Gu D, Huang Y, et al. CRISPR/Cas13a-driven lateral flow assay for preamplification-free and ultrasensitive miRNA-21 detection. Biosensors & bioelectronics [Internet]. 2025 Autumn;288:117850. Available from: https://pubmed.ncbi.nlm.nih.gov/40780174/
  24. Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell. 2016 May;165(5):1255–66.
  25. Koczula KM, Gallotta A. Lateral flow assays. Essays In Biochemistry [Internet]. 2016 Jun 30;60(1):111–20. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986465/
  26. Le TT et al. Dual Recognition Element Lateral Flow Assay Toward Multiplex Strain Specific Influenza Virus Detection. Analytical Chemistry. 2017 Jun 9;89(12):6781–6.
  27. Omidfar K, Riahi F, Kashanian S. Lateral Flow Assay: A Summary of Recent Progress for Improving Assay Performance. Biosensors [Internet]. 2023 Aug 23 [cited 2025 Sep 26];13(9):837. Available from: https://pubmed.ncbi.nlm.nih.gov/37754072/
  28. Kang X, Zhao C, Chen S, Yang S, Zhang X, Xue B, et al. A Novel Approach Using LuxSit-i Enhanced Toehold Switches for the Rapid Detection of Vibrio parahaemolyticus. Biosensors [Internet]. 2024 Spring;14(12):637. Available from: https://pubmed.ncbi.nlm.nih.gov/39727902/
  29. Ruppert C, Phogat N, Laufer S, Kohl M, Deigner HP. A smartphone readout system for gold nanoparticle-based lateral flow assays: application to monitoring of digoxigenin. Microchimica Acta. 2019 Jan 19;186(2).
  30. Abcam. GFP ELISA Kit (ab171581) | Abcam [Internet]. Abcam.com. 2023 [cited 2025 Sep 25]. Available from: https://www.abcam.com/en-us/products/elisa-kits/gfp-elisa-kit-ab171581?srsltid=AfmBOoqrkFx2xAgi36qziDjCG5L5SWAoOS6OYVdW1M21sX-QJ
  31. Boutal H, Moguet C, Pommiés L, Simon S, Naas T, Volland H. The Revolution of Lateral Flow Assay in the Field of AMR Detection. Diagnostics [Internet]. 2022 Jul 1 [cited 2025 Sep 25];12(7):1744. Available from: https://www.mdpi.com/2075-4418/12/7/1744/htm
  32. Wang T, Chen L, Chikkanna A, Chen S, Brusius I, Sbuh N, et al. Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis. Theranostics [Internet]. 2021 Mar 5;11(11):5174–96. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039946/
  33. Wang M et al. A lateral flow assay for miRNA-21 based on CRISPR/Cas13a and MnO2 nanosheets-mediated recognition and signal amplification. Analytical and Bioanalytical Chemistry. 2024 Apr 17;416(14):3401–13. Available from: https://link.springer.com/article/10.1007/s00216-024-05290-0
  34. Nafari NB et al. Recent advances in lateral flow assays for MicroRNA detection. Clinica Chimica Acta. 2025 Feb;567:120096. Available from: https://www.sciencedirect.com/science/article/pii/S0009898124023490
  35. TAKALKAR S et al. Gold Nanoparticle Coated Silica Nanorods for Sensitive Visual Detection of microRNA on a Lateral Flow Strip Biosensor. Analytical Sciences. 2016;32(6):617–22. Available from: https://link.springer.com/article/10.2116/analsci.32.617