iGEM logoAalto Helsinki iGEM 2025
Engineering

Ideation

Our journey began with a broad interest in Vitamin B12 absorption and the health challenges surrounding its deficiency. Early discussions of our team revolved around a deceptively simple question: “Can we design a better way to deliver B12 to people who cannot absorb it efficiently?” Meanwhile, we learned that while dietary B12 deficiency is common among certain populations, a significant number of patients suffer from malabsorption due to problems with intrinsic factor (IF), which is a glycoprotein essential for B12 uptake in the small intestine [1].

Engineering target

Our goal is to engineer and compare intrinsic factor (IF) proteins from a range of species to discover variants that bind vitamin B12 more effectively, interact optimally with human receptors, and are less affected by autoimmune antibodies. By identifying the most resilient and efficient IF candidates, we aim to lay the groundwork for next-generation oral B12 supplements that can overcome absorption deficiencies, reduce reliance on injections, and offer a scalable, sustainable alternative for at-risk populations.

DBTL cycle (IF)

At the start of our cross-species intrinsic factor project, we recognized the importance of approaching the work as an engineering challenge. Our aim was not only to express intrinsic factor Komagataella phaffii (pichia pastoris), but to produce variants from multiple species and systemically compare their structural and functional properties. To achieve this, we adopted the Design-Build-Test-Learn (DBTL) cycle widely used in synthetic biology, tailoring it to the practical realities of our workflow. In the design phase, we planned the genetic constructs and identified the analytical methods most suitable for our objectives and resources. The build phase involved cloning and expression, followed by verification of construct integrity and protein production. At each test stage, we conducted feasible assays to assess expression levels, folding, and binding characteristics. The outcomes informed the learn phase, allowing us to refine experimental conditions, troubleshoot issues, and prioritise subsequent steps.

Guiding questions diagram

Figure 1. Design-Built-Test-Learn cycle of cross-species engineering of IF in Komagataella phaffii (pichia pastoris)

Guiding questions diagram

Figure 2. Overview of our project’s wet-lab workflow, illustrating the iterative design-build-test-learn (DBTL) cycle stages

References

  1. The effect of recombinant human intrinsic factor on the uptake of vitamin B12 in patients with evident vitamin B12 deficiency. (2006, June 1). PubMed.
  2. Fedosov, S. N., Laursen, N. B., Nexø, E., Moestrup, S. K., Petersen, T. E., Jensen, E. Ø., & Berglund, L. (2003). Human intrinsic factor expressed in the plant Arabidopsis thaliana. European Journal of Biochemistry, 270(16), 3362–3367.
  3. Wen, J., Kinnear, M. B., Richardson, M. A., Willetts, N. S., Russell-Jones, G. J., Gordon, M. M., & Alpers, D. H. (2000). Functional expression in pichia pastoris of human and rat intrinsic factor. Biochimica Et Biophysica Acta (BBA) - Gene Structure and Expression, 1490(1–2), 43–53.
  4. Lima, S., Webb, C. L., Deery, E., Robinson, C., & Zedler, J. a. Z. (2018). Human intrinsic factor expression for bioavailable vitamin B12 enrichment in microalgae. Biology, 7(1), 19.
  5. Bor, M. V., Fedosov, S. N., Laursen, N. B., & Nexø, E. (2003). Recombinant human intrinsic factor expressed in plants is suitable for use in measurement of vitamin B12. Clinical Chemistry, 49(12), 2081–2083.
  6. Mathews, F. S., Gordon, M. M., Chen, Z., Rajashankar, K. R., Ealick, S. E., Alpers, D. H., & Sukumar, N. (2007). Crystal structure of human intrinsic factor: Cobalamin complex at 2.6-Å resolution. Proceedings of the National Academy of Sciences, 104(44), 17311–17316.
  7. Andersen, C. B. F., Madsen, M., Storm, T., Moestrup, S. K., & Andersen, G. R. (2010). Structural basis for receptor recognition of vitamin-B12–intrinsic factor complexes. Nature, 464(7287), 445–448.
  8. Abels, J., Woldring, M. G., Vegter, J. J. M., & Nieweg, H. O. (1957). Effect of rat intrinsic factor on vitamin B12 absorption in pernicious anemia. Science, 126(3273), 558.
  9. Allen, L. H. (2010). Bioavailability of vitamin B12. International Journal for Vitamin and Nutrition Research, 80(45), 330–335.
  10. Kurpad, A. V., Pasanna, R. M., Hegde, S. G., Patil, M., Mukhopadhyay, A., Sachdev, H. S., Bhat, K. G., Sivadas, A., & Devi, S. (2023). Bioavailability and daily requirement of vitamin B12 in adult humans: an observational study of its colonic absorption and daily excretion as measured by [13C]-cyanocobalamin kinetics. American Journal of Clinical Nutrition, 118(6), 1214–1223.
  11. Smolka, A., & Donaldson, R. M. (1990). Monoclonal antibodies to human intrinsic factor. Gastroenterology, 98(3), 607–614.
  12. Benoit, C. R., Stanton, A. E., Tartanian, A. C., Motzer, A. R., McGaughey, D. M., Bond, S. R., & Brody, L. C. (2018). Functional and phylogenetic characterization of noncanonical vitamin B12–binding proteins in zebrafish suggests involvement in cobalamin transport. Journal of Biological Chemistry, 293(45), 17606–17621.
  13. Ellenbogen, L., Chow, B. F., & Williams, W. (1958). Effect of intrinsic factor on absorption of vitamin B12 in healthy individuals. American Journal of Clinical Nutrition, 6(1), 26–29.
  14. Chernish, S. M., Helmer, O. M., Fouts, P. J., & Kohlstaedt, K. G. (1957). The effect of intrinsic factor on the absorption of vitamin B12 in older people. American Journal of Clinical Nutrition, 5(6), 651–658.
  15. Schwartz, M., Lous, P., & Meulengracht, E. (1957). REDUCED EFFECT OF HETEROLOGOUS INTRINSIC FACTOR. The Lancet, 269(6972), 751–753.
  16. Killander, A. (1957). REDUCED EFFECT OF HETEROLOGOUS INTRINSIC FACTOR. The Lancet, 269(6977), 1041.
  17. Hippe, E., & Schwartz, M. (1971). Intrinsic Factor Activity of Stomach Preparations from Various Animal Species. Scandinavian Journal of Haematology, 8(4), 276–281.
  18. Abels, J., Vegter, J. J. M., Woldring, M. G., Jans, J. H., & Nieweg, H. O. (1959). The physiologic mechanism of vitamin B12 absorption. Acta Medica Scandinavica, 165(2), 105–113.
  19. Wilkinson, J. F., Megalocytic anaemias. (1949, February 12). PubMed. https://pubmed.ncbi.nlm.nih.gov/18109524/
  20. Wilson, T. H., & Strauss, E. W. (1959). Some species differences in the intrinsic factor stimulation of B12 uptake by small intestine in vitro. American Journal of Physiology-Legacy Content, 197(4), 926–928.
  21. Holds-Worth, E., & Coates, M. (1960). The absorption of vitamin B12 in animals I. The effect of different binding and intrinsic factors. Clinica Chimica Acta, 5(6), 853–861.
  22. Holdsworth, E., & Coates, M. (1961). The absorption of vitamin B12 in animals II. The site of absorption of vitamin B12 and mode of action of intrinsic factor. Clinica Chimica Acta, 6(1), 44–55.
  23. Glass, G. B. J. (1963). Gastric Intrinsic Factor and its Function in the Metabolism of Vitamin B12. Physiological Reviews, 43(4), 529–849.
  24. Greibe, E., Fedosov, S., Sorensen, B. S., Højrup, P., Poulsen, S. S., & Nexo, E. (2012). A single rainbow trout cobalamin-binding protein stands in for three human binders. Journal of Biological Chemistry, 287(40), 33917–33925.
  25. Clausen, H., Wandall, H. H., DeLisa, M. P., Stanley, P., & Schnaar, R. L. (2022). Glycosylation Engineering. Essentials of Glycobiology - NCBI Bookshelf.
  26. Macauley‐Patrick, S., Fazenda, M. L., McNeil, B., & Harvey, L. M. (2005). Heterologous protein production using the pichia pastoris expression system. Yeast, 22(4), 249–270.
  27. Bawa, Z., & Darby, R. a. J. (2012). Optimising pichia pastoris Induction. Methods in Molecular Biology, 181–190.
Sponsor 1
Sponsor 2
Sponsor 3
Sponsor 4
Sponsor 5
Sponsor 6
Sponsor 7
Sponsor 8
Sponsor 9
Sponsor 10
Sponsor 11
Sponsor 1
Sponsor 2
Sponsor 3
Sponsor 4
Sponsor 5
Sponsor 6
Sponsor 7
Sponsor 8
Sponsor 9
Sponsor 10
Sponsor 11