Loading...

1 Materials and Methods

1.1 红藻多糖的利用

材料

菌株与宿主:选用酿酒酵母作为底盘细胞,初始菌株为酿酒酵母CEN PK2-1D(购自上海联祖生物科技有限公司)。

目的基因与来源:

基因类型 基因名称 来源菌株 序列获取方法
琼胶酶基因

Aga3463

Pseudoalteromonas sp. NJ21

通过 NCBI 数据库检索获取基因序列

AqAga

Aquimarina agarilytica ZC1

PdAgaC

Persicobacter sp. CCB-QB2

新琼二糖水解酶基因

agaNash

Cellvibrio sp. OA-2007

NH852

Aquimarina agarilytica ZC1

载体与元件:

pic1

我是图片注释

以酵母 2 micron ori 为复制起始元件,含氨苄青霉素抗性基因(AmpR)用于原核筛选、尿嘧啶合成基因(URA3)作为酵母筛选标记;借助Pgal7、Pgal1双向启动子,及CYC1、ADH1 终止子调控基因表达,搭载挖掘的 3 种琼胶酶基因(Aga3463、AqAga、PdAgaC)与 2 种新琼二糖水酶基因(agaNash、NH852),并利用分泌信号 α -factor mutant(αMF -)引导重组菌表达的活性琼胶酶向细胞外分泌,通过排列组合这些元件成功构建酿酒酵母重组菌,助力酵母中红藻多糖利用通路的搭建。

底物与试剂:

红藻原料:购买江苏连云港赣榆区的珊瑚草,磨粉后使用

化学试剂:卢戈氏碘液(含5%碘和10%碘化钾)、0.005M盐酸(分析纯,国药集团)、HPLC级乙腈与超纯水(默克)、DNS试剂、半乳糖检测试剂盒(Abcam);分子克隆试剂包括限制性内切酶(EcoRⅠ、XhoⅠ,NEB)、T4 DNA连接酶(Thermo Fisher)、PCR Mix(Takara)、Gibson组装反应液、50%PEG3350、2mol/L AcLi、β-巯基乙醇、鲑鱼精DNA。

方法

  1. 重组菌株的构建与筛选

    基因克隆:以合成的目的基因为模板,使用带酶切位点的引物进行PCR扩增,产物经琼脂糖凝胶电泳验证后回收。

    载体构建:将回收的目的基因与经相同酶切的表达载体连接,转化至大肠杆菌DH5α感受态细胞,通过氨苄青霉素抗性筛选阳性克隆,测序验证插入序列正确性。

    酵母转化:采用醋酸锂转化法将重组质粒导入酿酒酵母感受态细胞,在尿嘧啶缺陷型培养基上筛选转化子,通过菌落PCR验证基因整合情况。最终构建6株重组菌,分别组合3种琼胶酶与2种新琼二糖水解酶。

  2. 酶活力检测与分泌验证

    平板筛选:将重组菌株接种至含2%琼脂的SD/-Ura培养基,30℃培养16~24h后,各取2μL菌液滴在卢戈氏碘液平板上,培养48h后观察菌落周围是否出现透明圈,筛选出分泌活性较高的菌株,如Sq-Ag5。

    定量测定:收集重组菌株的发酵液,对其进行琼胶酶活及新琼二塘水解酶活的测定,具体步骤见protocal 基因表达1.d 1.e。

1.2 优化MVA途径

材料

基因与菌株:MVA途径关键基因 tHMG1(编码HMG-CoA还原酶,限速酶)与IDI1(编码异戊烯基焦磷酸异构酶),来源于酿酒酵母自身基因组;出发菌株为野生型酿酒酵母 S.cerevisiae CEN PK2-1D。

基因编辑工具:CRISPR/Cas9系统组件,包括pCas9质粒、靶向GAL80基因的gRNA表达质粒,以及含 tHMG1/IDI1与同源臂的供体DNA。

培养基:YPD培养基(酵母提取物1%、蛋白胨2%、葡萄糖2%);筛选培养基SD/-Leu/-Trp(缺陷型培养基,用于筛选含Cas9与gRNA的转化子)。

方法

  1. 构建过表达 tHMG1 和 IDI1 的工程菌株 Sq-0

    工程菌株 S.cerevisiae Sq-0 构建过程如下:以野生型酿酒酵母 S.cerevisiae CEN PK2-1D 为出发菌株,通过 CRISPR-Cas9 系统将 tHMG1(截短的羟甲基戊二酰辅酶 A 还原酶,SEQ ID NO.7)和 IDI1(异戊烯基二磷酸 δ 异构酶,SEQ ID NO.9)整合至基因组 GAL80 位点。

    具体步骤:

    1. 靶点与 Cas9-sgRNA 质粒构建:定位 GAL80 基因 ORF,筛选 sgRNA 靶序列(ACGATAGTTGCAGTATGGCG),以 p426-PTEF1-SpCas9-TCYC1-PSNR52-sgRNA-TSUP4 为模板 PCR 线性化扩增,转化大肠杆菌后测序验证,获得靶向 GAL80 的 Cas9-sgRNA 质粒。
    2. 供体 DNA 构建:PCR 扩增 tHMG1、IDI1 基因片段及双向启动子 Pgal1,10、终止子 TADH1 和 TCYC1,经 Gibson 组装后转化大肠杆菌,筛选验证正确后 PCR 扩增并纯化,得到 TADH1-IDI1-Pgal1,10-tHMG1-TCYC1 线性供体 DNA。
    3. 酵母编辑:用化转试剂盒制备感受态,共转化 Cas9-sgRNA 质粒(500ng)和供体 DNA(1μg),涂布尿嘧啶营养缺陷型平板筛选,经菌落 PCR 初筛后,通过含 5-氟乳清酸的 YPD 平板负筛丢弃 URA3 标签,最终获得基因型为△GAL80::tHMG1+IDI1 的工程菌株 Sq-0。
  2. 途径增强效果验证

    摇瓶发酵:将Sq-0接种至含20g/L葡萄糖的YPD培养基,30℃、200rpm培养5天,HPLC检测角鲨烯产量,结果显示其产量达806mg/L,较未改造菌株提升400倍,表明MVA途径得到有效增强。

1.3 发酵条件确定

材料

菌株:工程菌株 S.cerevisiae Sq-Ag5(携带 AqAga 与 agaNash 基因)。

培养基:YPDA 培养基:酵母粉 10 g/L,蛋白胨 20 g/L,葡萄糖 10 g/L,红藻多糖(琼脂)25 g/L,溶剂为去离子水。

红藻原料:购买江苏连云港赣榆区的珊瑚草,磨粉后使用。

化学试剂:盐酸(0.005 M,分析纯,国药集团)、氢氧化钠(1 M,分析纯)、HPLC 级乙醇(默克)、DNS 试剂。

方法

  1. 红藻多糖的液化

    液化处理:取红藻粉按1:20(w/v)比例加入0.005M盐酸,121℃高压灭菌处理30min,冷却后用1M NaOH回调pH至6.0,HPLC检测确认无游离单糖(避免干扰后续发酵),得到红藻多糖液化液。

  2. 发酵条件优化

    碳源组合优化:设置葡萄糖浓度(0, 2.5, 5, 7.5, 10 g/L)与琼脂浓度(10, 15, 20, 25, 30, 40 g/L)的正交实验,30℃、200rpm培养5天,检测角鲨烯产量(角鲨烯为三萜合成前体,HPLC条件:C18柱,流动相100%乙醇,流速0.5mL/min,210nm紫外检测),确定最佳组合为10g/L葡萄糖+25g/L琼脂。

1.4 启动子工程

空缺

1.5 Rh1合成

材料

异源基因:来源于人参(Panax ginseng)的关键酶基因,包括PgDDS(达玛烯二醇合酶,GenBank 登录号 AB265170.1)、CYP716A47(原人参二醇合酶,GenBank 登录号 JN604537.1)、CYP716A53v2(原人参三醇合酶,GenBank 登录号 JX036031.1)、PgCPR1(细胞色素 P450 还原酶,GenBank 登录号 AIC73829.1)与UGTPg100(糖基转移酶,GenBank 登录号 A0A0K0PVW1.1);所有基因均按酿酒酵母(S.cerevisiae)密码子偏好性优化后,分别克隆至 PUC57 载体(生工公司)保存。

载体与工具:CRISPR-Cas9 系统载体 p426-PTEF1-SpCas9-TCYC1-PSNR52-sgRNA-TSUP4(衍生自 p426-SNR52p-gRNA.csr-1.Y-SUP4t,宝赛生物货号 68060,插入 SpCas9 基因构建),用于靶向酵母基因组特定位点;筛选载体 pGAL1,10-MCS-His-MCS-Flag-URA(碧云天),提供URA3筛选标记及启动子(Pgal1,10、Pgal7)、终止子(TADH1、TCYC1、TALT1)元件;酵母转化采用 ZYMO Frozen-EZ Yeast Transformation II Kit。

整合位点:选定酿酒酵母基因组 3 个特异性位点,分别为 X-3 位点(染色体坐标 Chr X: 223616...224744)、XI-3 位点(染色体坐标 Chr XI: 93378...94567)、LPP1 位点(SGD 编号 S000002911),用于分步整合异源基因模块。

标准品与试剂:达玛烯二醇、原人参二醇、原人参三醇、人参皂苷 Rh1 标准品(纯度≥98%);DNS 试剂、5 - 氟乳清酸;高效液相色谱(HPLC)用乙腈(色谱纯)、正丁醇(萃取剂);SanPrep 柱式 PCR 产物纯化试剂盒;Gibson 组装反应液。

方法

  1. CRISPR-Cas9 靶向载体与供体 DNA 构建

    Cas9-sgRNA 质粒构建:通过 CHOPCHOP 在线工具设计 3 个整合位点的 sgRNA(20 nt):X-3 位点(GACACATTAGTCTCGTATGT)、XI-3 位点(GTAGAAATCAGACGCACGCT)、LPP1 位点(ATGAAACTTGAATGTCCGCT);以 p426-PTEF1-SpCas9-TCYC1-PSNR52-sgRNA-TSUP4 为模板,分别用对应位点的 sgRNA 引物(如 X-3-sgRNA-F/R)进行 PCR 线性化扩增,回收片段转化大肠杆菌 DH5α,挑取阳性克隆测序验证,获得靶向 3 个位点的 Cas9-sgRNA 质粒。

    供体 DNA 组装:

    X-3 位点(PgDDS 模块):PCR 扩增PgDDS基因片段(SEQ ID NO.11)、X-3 位点特异性Pgal1,10启动子与TADH1终止子,按摩尔比 1:1:1 混合后经 Gibson 组装(50℃连接 45 min),转化 DH5α 后通过氨苄抗性筛选、菌落 PCR 及测序验证,最终 PCR 扩增纯化得到 TADH1-PgDDS-Pgal1,10 线性供体 DNA。

    XI-3 位点(CYP716A47/PgCPR1 模块):扩增CYP716A47(SEQ ID NO.12)、PgCPR1(SEQ ID NO.13)基因片段及 XI-3 位点Pgal1,10、Pgal7启动子与TALT1、TCYC1终止子,按摩尔比 1:1:1:1:1 Gibson 组装,验证后纯化得到 Pgal1,10-CYP716A47-TALT1-Pgal7-PgCPR1-TCYC1 线性供体 DNA。

    LPP1 位点(CYP716A53v2/UGTPg100 模块):扩增CYP716A53v2(SEQ ID NO.14)、UGTPg100(SEQ ID NO.15)基因片段及 LPP1 位点Pgal1,10启动子与TADH1、TALT1终止子,Gibson 组装验证后纯化得到 TADH1-CYP716A53v2-Pgal1,10-UGTPg100-TALT1 线性供体 DNA。

  2. 分步整合构建工程菌株

    以 2 株出发菌(含 tHMG1/IDI1 的S.cerevisiae Sq-0、无 tHMG1/IDI1 的野生型 CEN PK2-1D)为底盘,采用酵母化转试剂盒制备感受态,分别共转化对应 Cas9-sgRNA 质粒(500 ng)与供体 DNA(1 μg),涂布尿嘧啶 YNB 营养缺陷型平板(30℃孵育 4~5 天),通过菌落 PCR 验证目的基因整合情况。

    对初筛阳性菌株进行负筛:接种至 YPD 液体培养基(30℃、220 rpm 培养 16 h),涂布含 1 mg/mL 5 - 氟乳清酸的 YPD 平板,丢弃URA3筛选标签,二次 PCR 验证后,从 Sq-0 底盘获得菌株S.cerevisiae Rh1-con,从野生型底盘获得菌株S.cerevisiae SC0Rh1。

    向两菌株中导入质粒 p426-AqAga-agaNash(红藻多糖降解相关基因),最终得到发酵菌株 Rh1-Ag(Rh1-con 衍生)与 SC0Rh1-Ag(SC0Rh1 衍生)。

  3. 红藻多糖底物发酵与产物验证

    发酵条件:以含 10 g/L 葡萄糖 + 25 g/L 红藻多糖的 YPDA 为培养基,按 1% 接种量接入 Rh1-Ag/SC0Rh1-Ag 一级种子液,30℃、220 rpm 摇瓶发酵 144 h,定时(0、12、24、48、72、96、120、144 h)取样检测糖消耗、菌体生长及 Rh1 产量。

    产物提取与检测:采用细胞破碎处理(萃取剂替换为正丁醇),HPLC 检测(LC-16 仪,SPD-16 检测器):色谱柱 Neptune 5u C18(250×4.6 mm),流动相为水 / 乙腈梯度洗脱(0~6 min 40→100% 乙腈,6~18 min 100% 乙腈,18~25 min 100→40% 乙腈,25~35 min 40% 乙腈),柱温 35℃,检测波长 203 nm。

    结果:Rh1-Ag 菌株在 144 h 时 Rh1 产量达 141.78 mg/L(发酵后期 72~144 h 因红藻多糖持续利用显著提升),而 SC0Rh1-Ag 未检测到 Rh1;证明 tHMG1/IDI1 可增强酵母 MVA 途径、平衡 IPP/DMAPP,且葡萄糖优先支持菌体生长,红藻多糖降解产物驱动 Rh1 合成。

2 Protocols

2.1 Culture Media Formulations

1 Uracil-Deficient YNB Plate

Toggle

Yeast Nitrogen Base (without amino acids)

6.7 g/L

Glucose

20 g/L

Histidine

50 mg/L

Tryptophan

50 mg/L

Leucine

50 mg/L

Agar

15 g/L

2 YPD Liquid Medium

Toggle

Yeast Extract

10 g/L

Peptone

20 g/L

Glucose

20 mg/L

Deionized Water

1 L

3 YPA Liquid Medium

Toggle

Yeast Extract

10 g/L

Peptone

20 g/L

Agar

20 mg/L

Deionized Water

1 L

4 Solid YPD Plate with 5-Fluoroorotic Acid (5-FOA)

Toggle

Yeast Extract

10 g/L

Peptone

20 g/L

Glucose

20 mg/L

Agar

15 g/L

5-Fluoroorotic Acid (5-FOA)

1 g/L

5 Lugol's Iodine Plate

Toggle

Yeast Nitrogen Base (without amino acids)

6.7 g/L

Glucose

20 g/L

Histidine

50 mg/L

Tryptophan

50 mg/L

Leucine

50 mg/L

Agar

15 mg/L

Lugol's Iodine Solution

5 mg/L

6 LB Medium

Toggle

Yeast Extract

5 g/L

Peptone

10 g/L

NaCl

10 g/L

121℃、20 min灭菌后按需加入相应抗生素。

7 YPDA Medium

Toggle

Yeast Extract

10 g/L

Peptone

20 g/L

Red Algal Polysaccharides

25 g/L

Glucose

10 g/L

Deionized Water

1 L

2.2 Plasmid Construction

1 PCR (Polymerase Chain Reaction)

Toggle

Purpose: 

Amplify target gene fragments using specific primers.

steps:

  1. In a sterile PCR tube, add the following reagents in order:

    DNA Template (50-200 ng)

    0.5 μL

    Forward Primer (10 μM)

    0.4 μL

    Reverse Primer (10 μM)

    0.4 μL

    High-Fidelity PCR Buffer (2X)

    10 μL

    ddH2O

    9.1 μL

  2. Place the tube in the PCR instrument for PCR amplification.

    PCR thermal cycling conditions:

    Step

    Time(s)

    Temperature(℃)

    Cycle

    Initial Denaturation

    180

    98

    1

    Denaturation

    10

    98

    30

    Annealing

    5

    58

    30

    Extension

    30-180

    72

    30

    Final Extension

    600

    72

    1

2 Agarose Gel Electrophoresis

Toggle

Purpose:

Separate and visualize DNA fragments by size; excise target bands.

steps:

Agarose Gel Preparation

  1. Weigh 0.4g agarose powder in a flask; add 50mL 1×TAE buffer.
  2. Heat in microwave with intermittent shaking until fully dissolved and clear.
  3. Cool solution to 50-60°C.
  4. Add 5μL Ultra GelRed dye; mix gently.
  5. Seal gel tray ends; insert comb.
  6. Pour solution into tray avoiding bubbles. Solidify at RT for 20-30 min.

Sample Loading Electrophoresis

  1. Remove comb and end seals after solidification.
  2. Place gel in tank with wells facing cathode.
  3. Add 1×TAE buffer to cover gel by 1-2mm.
  4. Load 5-10μL DNA samples mixed with loading buffer into wells. Include DNA ladder in one well.
  5. Run gel at 100V for 30 min.
  6. Stop when bromophenol blue reaches 2/3-3/4 gel length.
  7. Transfer gel to UV transilluminator; visualize and photograph bands.
  8. Excise target DNA fragments based on marker reference for purification.

3 DNA Purification and Recovery

Toggle

Using SanPrep Column PCR Product Purification Kit (Cat. B518141-0100)

Purpose: 

Remove enzymes, primers, and other impurities while concentrating target DNA to obtain high-purity templates for downstream experiments.

steps:

  1. Preparation: Ensure ethanol has been added to Wash Solution, and isopropanol to Buffer B3. Check for precipitation in Buffer B3.
  2. Add 5 volumes of Buffer B3 to the PCR reaction mixture and mix thoroughly.
  3. Centrifuge at 8,000 × g for 30 seconds. Discard the flow-through.
  4. Add 500 μL of Wash Solution, centrifuge at 9,000 × g for 30 seconds, and discard the flow-through.
  5. Repeat step 4 once.
  6. Centrifuge the empty column at 9,000 × g for 1 minute.
  7. Transfer the column to a clean 1.5 mL tube. Add 15–40 μL of Elution Buffer to the center of the membrane. Incubate at room temperature for 1 minute, then centrifuge for 1 minute. Collect and store the DNA solution.

4 Gibson Assembly

Toggle

Using SanPrep Column PCR Product Purification Kit (Cat. B518141-0100)

Purpose: 

Efficiently and accurately join multiple linear DNA fragments (e.g., target gene and linearized vector) into a complete circular recombinant plasmid in vitro.

steps:

  1. Prior to step 2, perform PCR and DNA purification for the target gene fragment.
  2. Measure concentrations of purified linearized vector and insert using a K5600C microspectrophotometer.
  3. Calculate molar concentrations based on measured concentrations and fragment lengths (bp).
  4. Precisely pipette calculated volumes of linearized vector and insert into a new sterile PCR tube or microcentrifuge tube; mix gently.
  5. Add an equal volume of Gibson Assembly Master Mix to the DNA mixture.
  6. Incubate at 50°C in a PCR instrument or water bath for 45 minutes.

5 Vector Transformation into E. coli DH5α Strain

Toggle

Purpose: 

Amplify plasmids efficiently using E. coli DH5α transformation and rapidly obtain positive clones via antibiotic selection.

steps:

  1. Thaw 50 μL of DH5α competent cells slowly on ice.
  2. Add 1–5 μL of ligation product or plasmid DNA to the cells; mix gently and incubate on ice for 5 minutes.
  3. Heat-shock at 42°C for 1 minute, then return to ice for 3 minutes.
  4. Under sterile conditions, spread the mixture directly onto an LB agar plate containing 150 μg/mL ampicillin.
  5. Incubate at 37°C for 12–15 hours (no satellite colonies observed). Pick colonies for verification by colony PCR.

6 Colony PCR

Toggle

Purpose: 

Rapidly and efficiently screen for positive E. coli clones containing the target agarase gene insert in the plasmid, rather than empty vector clones.

steps:

  1. In a sterile PCR tube, add the following reagents in order:

    DNA Template (50-200 ng)

    5 μL

    Forward Primer (10 μM)

    0.2 μL

    Reverse Primer (10 μM)

    0.2 μL

    High-Fidelity PCR Buffer (2X)

    0.3 μL

    ddH2O

    4.3 μL

  2. Place the tube in the PCR instrument for PCR amplification.

    PCR thermal cycling conditions:

    Step

    Time(s)

    Temperature(℃)

    Cycle

    Initial Denaturation

    180

    98

    1

    Denaturation

    10

    98

    30

    Annealing

    5

    58

    30

    Extension

    30-180

    72

    30

    Final Extension

    600

    72

    1

2.3 Gene Expression

1 Episomal Plasmid Expression

Toggle
  1. Lithium Acetate Transformation Method

    Purpose: 

    Efficiently introduce in vitro constructed recombinant plasmid DNA into engineered Saccharomyces cerevisiae cells.

    steps:

    1. Pick a single colony from a solid plate and inoculate into YPD liquid medium; incubate at 30°C, 220 rpm for 16 h.
    2. Take 500 μL culture, centrifuge at 8000 rpm, and discard supernatant.
    3. Add sequentially: 3 μL of 10 mg/mL salmon sperm ssDNA (denatured at 95°C for 5 min and chilled on ice), 100 μL transformation mix (800 μL 50% PEG3350, 200 μL 2 mol/L LiAc, 7.5 μL β-mercaptoethanol, balance ddH₂O per 1 mL), and 0.1–1 μg plasmid; mix well.
    4. Incubate at 37°C for 30 min, centrifuge at 8000 rpm for 3 min, discard supernatant.
    5. Resuspend cells in 500 μL sterile water, plate 80 μL on uracil-deficient YNB plates, incubate at 30°C for 3–5 days.
  2. Preliminary Verification by Lugol’s Iodine Plate Assay

    Purpose: 

    Qualitatively and rapidly determine whether engineered yeast successfully secretes active extracellular enzymes for degrading red algal polysaccharides, based on clear hydrolysis zones around colonies.

    steps:

    1. Inoculate a single colony of engineered strain into 5 mL uracil-deficient YNB liquid medium; culture at 30°C, 220 rpm for 16–24 h.
    2. Spot 2 μL culture onto Lugol’s iodine plates, incubate for 48 h, and observe clear zones. Undegraded areas appear dark blue.
  3. Pre-treatment for Enzyme Activity Assay
    1. From a fresh plate (≤1 month old), pick a single S. cerevisiae colony and inoculate into 3 mL uracil-deficient YNB liquid medium; culture overnight at 30°C, 220 rpm to obtain primary seed culture in log phase.
    2. Inoculate 1% activated seed culture of 6 engineered strains into YPDA medium; after 96 h fermentation, collect broth for agarase and neoagarobiose hydrolase activity assays.
  4. Agarase Activity Assay

    Purpose: 

    Quantitatively evaluate the overall ability of extracellular agarase secreted by engineered strains to degrade agar polysaccharides into reducing sugars, for screening the most efficient degraders.

    steps:

    1. Precisely weigh dried glucose standard and prepare a 1.0 mg/mL stock solution with deionized water.
    2. Prepare standard series in test tubes as follows:

      Tube No.

      Glucose Stock (mL)

      Deionized Water (mL)

      Glucose Content (μg)

      0

      0.0

      1.0

      0

      1

      0.2

      0.8

      200

      2

      0.4

      0.6

      400

      3

      0.6

      0.4

      600

    3. Add 1.5 mL DNS reagent to each tube, heat in boiling water bath for exactly 5 min, then immediately cool.
    4. Add 8.5 mL deionized water to each tube, mix well.
    5. Measure absorbance at 540 nm using Tube 0 as blank.
    6. Plot standard curve with glucose content (μg) as X and OD540 as Y. Obtain regression equation: Y = 1.391X - 0.07451 (R² = 0.9974).

    Enzyme Activity Assay:

    1. Add 200 μL fermentation broth to 800 μL Tris-HCl buffer (pH 8.0) containing 0.3% w/v agar in a colorimetric tube. React with shaking at 40°C for 20 min.
    2. Add 1 mL DNS reagent, heat in boiling water bath for 5 min, cool, and dilute to 10 mL with distilled water. Mix well.
    3. Measure absorbance at 540 nm using inactivated enzyme as control. Calculate reducing sugar content using standard curve (Y=1.391X-0.07451, R²=0.9974).
    4. Unit definition (U): Enzyme amount required to produce 1 μg reducing sugar per minute under above conditions.

  5. Neoagarobiose Hydrolase Activity Assay

    Purpose: 

    Specifically detect the efficiency of engineered strains hydrolyzing neoagarobiose (agar degradation product) into galactose, ensuring complete degradation of algal polysaccharides into utilizable monosaccharides.

    steps:

      Galactose Standard Curve (Using Abcam Galactose Assay Kit):

    1. Dilute kit-provided galactose standard (100 mmol/μL) to 1 mmol/μL working solution using Assay Buffer.
    2. Take 10 μL working solution, add 990 μL Assay Buffer, mix thoroughly to obtain 10 nmol/μL diluted standard.
    3. Add reagents to wells as per table:

      Tube No.

      Glucose Stock (mL)

      Deionized Water (mL)

      Glucose Content (μg)

      0

      0.0

      1.0

      0

      1

      0.2

      0.8

      200

      2

      0.4

      0.6

      400

      3

      0.6

      0.4

      600

      4

      0.8

      0.2

      800

      5

      1.0

      0.0

      1000

    4. Then add sequentially to each well: 2 μL Galactose Probe, 2 μL Galactose Enzyme Mix, and 2 μL HRP.
    5. Incubate the reaction system at 37°C in the dark for 40 min.
    6. Measure the absorbance (OD₅₇₀) of each well at 570 nm.
    7. Plot the galactose standard curve with galactose content (nmol) as X and OD₅₇₀ as Y, obtaining the regression equation: Y = 0.07252X + 0.03044 (R² = 0.9945).

    Enzyme Activity Assay:

    1. Dilute the galactose standard (Abcam kit) to 1 nmol/μL: Add 10 μL of 100 nmol/μL galactose standard to 990 μL galactose assay buffer and mix thoroughly.
    2. Add 0, 2, 4, 6, 8, and 10 μL of the diluted standard to a series of wells. Adjust each well to 50 μL with galactose assay buffer, resulting in 0, 2, 4, 6, 8, and 10 nmol galactose standards per well.
    3. Plot the standard curve with galactose concentration (nmol) as X and OD570 as Y.
    4. Calculate galactose content in the fermentation broth using the standard curve (Y=0.07252X+0.03044, R²=0.9945).
    5. To 25 μL fermentation broth (using inactivated enzyme as control), add 25 μL of 2 mM neoagarobiose, 44 μL galactose assay buffer, 2 μL galactose probe, 2 μL galactose enzyme mix, and 2 μL HRP. Total reaction volume is 100 μL. Incubate at 37°C for 40 min.
    6. Measure absorbance at 570 nm.
    7. Unit definition (U):Enzyme amount required to convert 1 μmol galactose per minute.

2 Genomic Integration Expression

Toggle

CRISPR-Cas9 Plasmid Construction for Targeted Genomic Loci

Purpose: 

Construct Cas9 plasmids expressing specific sgRNAs to create DNA double-strand breaks at specific yeast genomic loci, providing targets for subsequent homologous recombination and foreign gene integration.

steps:

  1. Use online tool CHOPCHOP (https://chopchop.cbu.uib.no/) to design efficient and low-off-target 20 nt sgRNA sequences for target genomic loci (e.g., GAL80, X-3).
  2. Amplify sgRNA fragment using p426-SNR52p-gRNA.csr-1.Y-SUP4t as template with primers sg-F and sg-R; amplify Cas9 fragment using Addgene SpCas9 plasmid as template with primers Cas9-F and Cas9-R. Mix sgRNA and Cas9 fragments at 1:1 molar ratio to assemble p426-PTEF1-SpCas9-TCYC1-PSNR52-sgRNA-TSUP4 plasmid.
  3. Use Cas9 empty vector (p426-PTEF1-SpCas9-TCYC1-PSNR52-sgRNA-TSUP4) as template and designed sgRNA sequence as 5' homology arm in primers for PCR linearization to obtain linearized vector backbone.
  4. Transform 100 ng linearized plasmid into E. coli DH5α competent cells after purifying the target gene fragment.
  5. Pick 3 positive transformants for culture, extract plasmids, and send for sequencing verification (e.g., Sangon Biotech) to obtain validated Cas9-sgRNA plasmids targeting the gene locus.

Donor DNA Preparation

Purpose: 

Prepare linear DNA fragments containing the target gene and homology arms as repair templates for homologous recombination, guiding precise integration of foreign genes into specific genomic loci.

steps:

  1. Amplify target gene, promoter, terminator, etc., by PCR using yeast genomic DNA or plasmid as template.
  2. Assemble all elements using Gibson Assembly.
  3. Transform the assembled product into E. coli DH5α, screen positive clones using ampicillin resistance, and verify by colony PCR and sequencing.
  4. Amplify the correct construct using specific primers and purify the gene fragment with SanPrep Column PCR Product Purification Kit to obtain donor DNA.
  1. Preparation of S. cerevisiae CEN.PK2-1D Competent Cells

    Using ZYMO Frozen-EZ Yeast Transformation II Kit

    Purpose: 

    Disrupt the cell wall barrier to enable efficient uptake of foreign DNA by S. cerevisiae for genetic modification.

    steps:

    1. Inoculate CEN.PK2-1D strain in 10 mL YPD liquid medium. Incubate at 30°C with vigorous shaking (200-250 rpm) until mid-log phase (OD600 ≈ 0.8-1.0).
    2. Centrifuge at 500 × g for 4 min, discard supernatant. Resuspend cell pellet in 10 mL Solution 1, centrifuge again at 500 × g for 4 min, and discard supernatant to thoroughly wash cells.
    3. Add 1 mL Solution 2 to the washed cell pellet, resuspend completely by pipetting or vortexing. The resulting cell suspension is competent cells, ready for immediate transformation or freezing.
  2. Primary Screening

    Purpose: 

    Rapidly screen for positive clones with potential correct homologous recombination from a large number of transformants.

    steps:

    1. Verify by colony PCR: Pick single colonies from uracil-deficient YNB plates, transfer to tubes containing PCR mix, and use GAL80 locus verification primers F and R to check target gene integration in the yeast genome.
  3. Counter-Selection

    Purpose: 

    Eliminate the URA3 selection marker gene from positive clones to obtain engineered strains containing only the target gene without exogenous markers.

    steps:

    1. Inoculate transformants with correct primary screening bands into YPD liquid medium; incubate at 30°C, 220 rpm for 16 h.
    2. Spread onto solid YPD plates containing 1 mg/mL 5-fluoroorotic acid (5-FOA) for counter-selection. Perform PCR verification again on colonies growing on the plates; strains verified correctly indicate successful marker loss.

2.4Chemical Experiments & Process Optimization

1 Red Algae Hydrolysate Preparation

Toggle

Purpose: 

Mild hydrolysis of red algal powder using dilute HCl to convert hard-to-utilize polysaccharides into fermentable reducing sugars, providing a carbon source for yeast.

steps:

  1. Mix 5g algal powder with 0.1 mM HCl solution at 1:10 ratio (total volume 50 mL); react at 115°C for 15 min.
  2. After reaction, adjust hydrolysate pH to 7.0 using NaOH solution to suit yeast growth.
  3. Dilute the neutralized hydrolysate 1:1 with deionized water, use as YP fermentation medium in shake flasks.
  4. Measure initial reducing sugar concentration of diluted medium to assess carbon source content.

2 HPLC Analysis

Toggle
  1. Quantification of Squalene Accumulation

    steps:

    Squalene Standard Curve Preparation:

    1. Add 0.5 mL grinding beads to a disruption tube, then add 0.5 mL fermentation broth and 1 mL ethyl acetate.
    2. Disrupt cells using a Bioprep-24R instrument, then centrifuge at 12,000 × g for 1 min.
    3. Use a needle to aspirate the supernatant (ethyl acetate layer), attach a 0.22 μm organic solvent filter, discard the first few drops (~3 drops) to prime the filter and remove dead volume. Collect subsequent filtrate into clear HPLC vials for analysis.
    4. Precisely weigh 10.0 mg squalene standard (purity ≥95%), dissolve in ethyl acetate, and dilute to 10 mL in a volumetric flask to prepare 1.0 mg/mL stock solution.
    5. Perform gradient dilution of the stock solution with ethyl acetate to prepare a series of standard working solutions:
    6. Filter the upper ethyl acetate layer through a 0.22 μm membrane for HPLC analysis. Record the squalene chromatographic peak area for each concentration.
    7. Plot squalene concentration (μg/mL) as X and the measured average peak area as Y. Perform linear regression to obtain the equation: Y = 14498.99X + 387171.62, R² = 0.9992.
    8. HPLC Conditions:

      System: Shimadzu LC-16 with SPD-16 UV detector

      Column: Agilent Poroshell 120 EC-C18 (2.1 × 100 mm)

      Eluent: 100% acetonitrile

      Flow rate: 0.5 mL/min

      Injection volume: 2 μL

      Detection wavelength: 210 nm

  2. Detection of Rare Ginsenoside Rh1 Production

    steps:

    Rh1 Standard Curve Preparation:

    1. Precisely weigh 3.0 mg of 20(S)-Rh1 standard, dissolve in 1000 μL methanol to prepare a 3 mg/mL stock solution.
    2. Label 7 clean HPLC vials as 1-7.
    3. Pipette corresponding volumes of 3 mg/mL stock into each vial and add HPLC-grade methanol to adjust the total volume to 400 μL:

      Tube No.

      Stock (mL)

      Methanol (μL)

      Concentration (mg/mL)

      1

      4

      396

      0.01

      2

      10

      390

      0.025

      3

      20

      380

      0.05

      4

      40

      360

      0.10

      5

      100

      300

      0.25

      6

      200

      200

      0.50

      7

      400

      0

      1.00

    4. Filter the methanol layer through a 0.22 μm membrane for HPLC analysis. Record the Rh1 peak area for each concentration.
    5. Plot Rh1 concentration (g/L) as X and average peak area as Y. Perform linear regression to obtain the equation: Y = 3878X + 38658, R² = 0.9990.

    Rh1 Quantification:

    1. Add 0.5 mL fermentation broth to a disruption tube containing 0.5 g of 0.5 mm glass beads and 1 mL n-butanol.
    2. Disrupt cells using a Bioprep-24R instrument, then centrifuge at 10,000 × g for 1 min.
    3. Filter the upper n-butanol layer through a 0.22 μm membrane for HPLC analysis.

HPLC Conditions:

System: Shimadzu LC-16 with SPD-16 dual-wavelength UV detector

Column: Neptune 5u C18 (250 × 4.6 mm)

Mobile phase: Water/acetonitrile

Detection wavelength: 203 nm

Column temperature: 35°C

Gradient elution: 0-6 min (40-100% B), 6-18 min (100% B), 18-25 min (100-40% B), 25-35 min (40% B)

3 Determination of Liquefaction Conditions

Toggle

Purpose:

High concentrations of red algal polysaccharides increase medium viscosity, inhibiting strain growth. Determine the specific conditions for liquefaction using low HCl concentrations.

Steps:

  1. Treat 25 mL YPDA medium with HCl gradients (0.001-0.01 M) at 121°C for 20 min.
  2. Analyze by HPLC to detect neoagarobiose and monosaccharides.

4 Orthogonal Experiment: Red Algal Polysaccharide & Glucose Concentrations

Toggle

Purpose:

Determine the optimal ratio of red algal polysaccharides to glucose in the medium for squalene production by engineered strain Sq-Ag5.

Steps:

  1. Prepare YPDA liquid media with glucose concentrations (0, 2.5, 5, 7.5, 10 g/L) and red algal polysaccharide concentrations (10, 15, 20, 25, 30, 40 g/L).
  2. Inoculate 1% (v/v) primary seed culture into 250 mL flasks containing 25 mL YPDA medium. Ferment at 30°C, 220 rpm for 96 h.
  3. Measure squalene content in fermentation broth by HPLC to determine the optimal carbon source composition.

3 Sequences

Up Arrow