1 Materials and Methods
1.1 红藻多糖的利用
材料
菌株与宿主:选用酿酒酵母作为底盘细胞,初始菌株为酿酒酵母CEN PK2-1D(购自上海联祖生物科技有限公司)。
目的基因与来源:
基因类型 | 基因名称 | 来源菌株 | 序列获取方法 |
---|---|---|---|
琼胶酶基因 |
Aga3463 |
Pseudoalteromonas sp. NJ21 |
通过 NCBI 数据库检索获取基因序列 |
AqAga |
Aquimarina agarilytica ZC1 |
||
PdAgaC |
Persicobacter sp. CCB-QB2 |
||
新琼二糖水解酶基因 |
agaNash |
Cellvibrio sp. OA-2007 |
|
NH852 |
Aquimarina agarilytica ZC1 |
载体与元件:

我是图片注释
以酵母 2 micron ori 为复制起始元件,含氨苄青霉素抗性基因(AmpR)用于原核筛选、尿嘧啶合成基因(URA3)作为酵母筛选标记;借助Pgal7、Pgal1双向启动子,及CYC1、ADH1 终止子调控基因表达,搭载挖掘的 3 种琼胶酶基因(Aga3463、AqAga、PdAgaC)与 2 种新琼二糖水酶基因(agaNash、NH852),并利用分泌信号 α -factor mutant(αMF -)引导重组菌表达的活性琼胶酶向细胞外分泌,通过排列组合这些元件成功构建酿酒酵母重组菌,助力酵母中红藻多糖利用通路的搭建。
底物与试剂:
红藻原料:购买江苏连云港赣榆区的珊瑚草,磨粉后使用
化学试剂:卢戈氏碘液(含5%碘和10%碘化钾)、0.005M盐酸(分析纯,国药集团)、HPLC级乙腈与超纯水(默克)、DNS试剂、半乳糖检测试剂盒(Abcam);分子克隆试剂包括限制性内切酶(EcoRⅠ、XhoⅠ,NEB)、T4 DNA连接酶(Thermo Fisher)、PCR Mix(Takara)、Gibson组装反应液、50%PEG3350、2mol/L AcLi、β-巯基乙醇、鲑鱼精DNA。
方法
-
重组菌株的构建与筛选
基因克隆:以合成的目的基因为模板,使用带酶切位点的引物进行PCR扩增,产物经琼脂糖凝胶电泳验证后回收。
载体构建:将回收的目的基因与经相同酶切的表达载体连接,转化至大肠杆菌DH5α感受态细胞,通过氨苄青霉素抗性筛选阳性克隆,测序验证插入序列正确性。
酵母转化:采用醋酸锂转化法将重组质粒导入酿酒酵母感受态细胞,在尿嘧啶缺陷型培养基上筛选转化子,通过菌落PCR验证基因整合情况。最终构建6株重组菌,分别组合3种琼胶酶与2种新琼二糖水解酶。
-
酶活力检测与分泌验证
平板筛选:将重组菌株接种至含2%琼脂的SD/-Ura培养基,30℃培养16~24h后,各取2μL菌液滴在卢戈氏碘液平板上,培养48h后观察菌落周围是否出现透明圈,筛选出分泌活性较高的菌株,如Sq-Ag5。
定量测定:收集重组菌株的发酵液,对其进行琼胶酶活及新琼二塘水解酶活的测定,具体步骤见protocal 基因表达1.d 1.e。
1.2 优化MVA途径
材料
基因与菌株:MVA途径关键基因 tHMG1(编码HMG-CoA还原酶,限速酶)与IDI1(编码异戊烯基焦磷酸异构酶),来源于酿酒酵母自身基因组;出发菌株为野生型酿酒酵母 S.cerevisiae CEN PK2-1D。
基因编辑工具:CRISPR/Cas9系统组件,包括pCas9质粒、靶向GAL80基因的gRNA表达质粒,以及含 tHMG1/IDI1与同源臂的供体DNA。
培养基:YPD培养基(酵母提取物1%、蛋白胨2%、葡萄糖2%);筛选培养基SD/-Leu/-Trp(缺陷型培养基,用于筛选含Cas9与gRNA的转化子)。
方法
-
构建过表达 tHMG1 和 IDI1 的工程菌株 Sq-0
工程菌株 S.cerevisiae Sq-0 构建过程如下:以野生型酿酒酵母 S.cerevisiae CEN PK2-1D 为出发菌株,通过 CRISPR-Cas9 系统将 tHMG1(截短的羟甲基戊二酰辅酶 A 还原酶,SEQ ID NO.7)和 IDI1(异戊烯基二磷酸 δ 异构酶,SEQ ID NO.9)整合至基因组 GAL80 位点。
具体步骤:
- 靶点与 Cas9-sgRNA 质粒构建:定位 GAL80 基因 ORF,筛选 sgRNA 靶序列(ACGATAGTTGCAGTATGGCG),以 p426-PTEF1-SpCas9-TCYC1-PSNR52-sgRNA-TSUP4 为模板 PCR 线性化扩增,转化大肠杆菌后测序验证,获得靶向 GAL80 的 Cas9-sgRNA 质粒。
- 供体 DNA 构建:PCR 扩增 tHMG1、IDI1 基因片段及双向启动子 Pgal1,10、终止子 TADH1 和 TCYC1,经 Gibson 组装后转化大肠杆菌,筛选验证正确后 PCR 扩增并纯化,得到 TADH1-IDI1-Pgal1,10-tHMG1-TCYC1 线性供体 DNA。
- 酵母编辑:用化转试剂盒制备感受态,共转化 Cas9-sgRNA 质粒(500ng)和供体 DNA(1μg),涂布尿嘧啶营养缺陷型平板筛选,经菌落 PCR 初筛后,通过含 5-氟乳清酸的 YPD 平板负筛丢弃 URA3 标签,最终获得基因型为△GAL80::tHMG1+IDI1 的工程菌株 Sq-0。
-
途径增强效果验证
摇瓶发酵:将Sq-0接种至含20g/L葡萄糖的YPD培养基,30℃、200rpm培养5天,HPLC检测角鲨烯产量,结果显示其产量达806mg/L,较未改造菌株提升400倍,表明MVA途径得到有效增强。
1.3 发酵条件确定
材料
菌株:工程菌株 S.cerevisiae Sq-Ag5(携带 AqAga 与 agaNash 基因)。
培养基:YPDA 培养基:酵母粉 10 g/L,蛋白胨 20 g/L,葡萄糖 10 g/L,红藻多糖(琼脂)25 g/L,溶剂为去离子水。
红藻原料:购买江苏连云港赣榆区的珊瑚草,磨粉后使用。
化学试剂:盐酸(0.005 M,分析纯,国药集团)、氢氧化钠(1 M,分析纯)、HPLC 级乙醇(默克)、DNS 试剂。
方法
-
红藻多糖的液化
液化处理:取红藻粉按1:20(w/v)比例加入0.005M盐酸,121℃高压灭菌处理30min,冷却后用1M NaOH回调pH至6.0,HPLC检测确认无游离单糖(避免干扰后续发酵),得到红藻多糖液化液。
-
发酵条件优化
碳源组合优化:设置葡萄糖浓度(0, 2.5, 5, 7.5, 10 g/L)与琼脂浓度(10, 15, 20, 25, 30, 40 g/L)的正交实验,30℃、200rpm培养5天,检测角鲨烯产量(角鲨烯为三萜合成前体,HPLC条件:C18柱,流动相100%乙醇,流速0.5mL/min,210nm紫外检测),确定最佳组合为10g/L葡萄糖+25g/L琼脂。
1.4 启动子工程
空缺
1.5 Rh1合成
材料
异源基因:来源于人参(Panax ginseng)的关键酶基因,包括PgDDS(达玛烯二醇合酶,GenBank 登录号 AB265170.1)、CYP716A47(原人参二醇合酶,GenBank 登录号 JN604537.1)、CYP716A53v2(原人参三醇合酶,GenBank 登录号 JX036031.1)、PgCPR1(细胞色素 P450 还原酶,GenBank 登录号 AIC73829.1)与UGTPg100(糖基转移酶,GenBank 登录号 A0A0K0PVW1.1);所有基因均按酿酒酵母(S.cerevisiae)密码子偏好性优化后,分别克隆至 PUC57 载体(生工公司)保存。
载体与工具:CRISPR-Cas9 系统载体 p426-PTEF1-SpCas9-TCYC1-PSNR52-sgRNA-TSUP4(衍生自 p426-SNR52p-gRNA.csr-1.Y-SUP4t,宝赛生物货号 68060,插入 SpCas9 基因构建),用于靶向酵母基因组特定位点;筛选载体 pGAL1,10-MCS-His-MCS-Flag-URA(碧云天),提供URA3筛选标记及启动子(Pgal1,10、Pgal7)、终止子(TADH1、TCYC1、TALT1)元件;酵母转化采用 ZYMO Frozen-EZ Yeast Transformation II Kit。
整合位点:选定酿酒酵母基因组 3 个特异性位点,分别为 X-3 位点(染色体坐标 Chr X: 223616...224744)、XI-3 位点(染色体坐标 Chr XI: 93378...94567)、LPP1 位点(SGD 编号 S000002911),用于分步整合异源基因模块。
标准品与试剂:达玛烯二醇、原人参二醇、原人参三醇、人参皂苷 Rh1 标准品(纯度≥98%);DNS 试剂、5 - 氟乳清酸;高效液相色谱(HPLC)用乙腈(色谱纯)、正丁醇(萃取剂);SanPrep 柱式 PCR 产物纯化试剂盒;Gibson 组装反应液。
方法
-
CRISPR-Cas9 靶向载体与供体 DNA 构建
Cas9-sgRNA 质粒构建:通过 CHOPCHOP 在线工具设计 3 个整合位点的 sgRNA(20 nt):X-3 位点(GACACATTAGTCTCGTATGT)、XI-3 位点(GTAGAAATCAGACGCACGCT)、LPP1 位点(ATGAAACTTGAATGTCCGCT);以 p426-PTEF1-SpCas9-TCYC1-PSNR52-sgRNA-TSUP4 为模板,分别用对应位点的 sgRNA 引物(如 X-3-sgRNA-F/R)进行 PCR 线性化扩增,回收片段转化大肠杆菌 DH5α,挑取阳性克隆测序验证,获得靶向 3 个位点的 Cas9-sgRNA 质粒。
供体 DNA 组装:
X-3 位点(PgDDS 模块):PCR 扩增PgDDS基因片段(SEQ ID NO.11)、X-3 位点特异性Pgal1,10启动子与TADH1终止子,按摩尔比 1:1:1 混合后经 Gibson 组装(50℃连接 45 min),转化 DH5α 后通过氨苄抗性筛选、菌落 PCR 及测序验证,最终 PCR 扩增纯化得到 TADH1-PgDDS-Pgal1,10 线性供体 DNA。
XI-3 位点(CYP716A47/PgCPR1 模块):扩增CYP716A47(SEQ ID NO.12)、PgCPR1(SEQ ID NO.13)基因片段及 XI-3 位点Pgal1,10、Pgal7启动子与TALT1、TCYC1终止子,按摩尔比 1:1:1:1:1 Gibson 组装,验证后纯化得到 Pgal1,10-CYP716A47-TALT1-Pgal7-PgCPR1-TCYC1 线性供体 DNA。
LPP1 位点(CYP716A53v2/UGTPg100 模块):扩增CYP716A53v2(SEQ ID NO.14)、UGTPg100(SEQ ID NO.15)基因片段及 LPP1 位点Pgal1,10启动子与TADH1、TALT1终止子,Gibson 组装验证后纯化得到 TADH1-CYP716A53v2-Pgal1,10-UGTPg100-TALT1 线性供体 DNA。
-
分步整合构建工程菌株
以 2 株出发菌(含 tHMG1/IDI1 的S.cerevisiae Sq-0、无 tHMG1/IDI1 的野生型 CEN PK2-1D)为底盘,采用酵母化转试剂盒制备感受态,分别共转化对应 Cas9-sgRNA 质粒(500 ng)与供体 DNA(1 μg),涂布尿嘧啶 YNB 营养缺陷型平板(30℃孵育 4~5 天),通过菌落 PCR 验证目的基因整合情况。
对初筛阳性菌株进行负筛:接种至 YPD 液体培养基(30℃、220 rpm 培养 16 h),涂布含 1 mg/mL 5 - 氟乳清酸的 YPD 平板,丢弃URA3筛选标签,二次 PCR 验证后,从 Sq-0 底盘获得菌株S.cerevisiae Rh1-con,从野生型底盘获得菌株S.cerevisiae SC0Rh1。
向两菌株中导入质粒 p426-AqAga-agaNash(红藻多糖降解相关基因),最终得到发酵菌株 Rh1-Ag(Rh1-con 衍生)与 SC0Rh1-Ag(SC0Rh1 衍生)。
-
红藻多糖底物发酵与产物验证
发酵条件:以含 10 g/L 葡萄糖 + 25 g/L 红藻多糖的 YPDA 为培养基,按 1% 接种量接入 Rh1-Ag/SC0Rh1-Ag 一级种子液,30℃、220 rpm 摇瓶发酵 144 h,定时(0、12、24、48、72、96、120、144 h)取样检测糖消耗、菌体生长及 Rh1 产量。
产物提取与检测:采用细胞破碎处理(萃取剂替换为正丁醇),HPLC 检测(LC-16 仪,SPD-16 检测器):色谱柱 Neptune 5u C18(250×4.6 mm),流动相为水 / 乙腈梯度洗脱(0~6 min 40→100% 乙腈,6~18 min 100% 乙腈,18~25 min 100→40% 乙腈,25~35 min 40% 乙腈),柱温 35℃,检测波长 203 nm。
结果:Rh1-Ag 菌株在 144 h 时 Rh1 产量达 141.78 mg/L(发酵后期 72~144 h 因红藻多糖持续利用显著提升),而 SC0Rh1-Ag 未检测到 Rh1;证明 tHMG1/IDI1 可增强酵母 MVA 途径、平衡 IPP/DMAPP,且葡萄糖优先支持菌体生长,红藻多糖降解产物驱动 Rh1 合成。
2 Protocols
2.1 Culture Media Formulations
1 Uracil-Deficient YNB Plate
Yeast Nitrogen Base (without amino acids) |
6.7 g/L |
Glucose |
20 g/L |
Histidine |
50 mg/L |
Tryptophan |
50 mg/L |
Leucine |
50 mg/L |
Agar |
15 g/L |
2 YPD Liquid Medium
Yeast Extract |
10 g/L |
Peptone |
20 g/L |
Glucose |
20 mg/L |
Deionized Water |
1 L |
3 YPA Liquid Medium
Yeast Extract |
10 g/L |
Peptone |
20 g/L |
Agar |
20 mg/L |
Deionized Water |
1 L |
4 Solid YPD Plate with 5-Fluoroorotic Acid (5-FOA)
Yeast Extract |
10 g/L |
Peptone |
20 g/L |
Glucose |
20 mg/L |
Agar |
15 g/L |
5-Fluoroorotic Acid (5-FOA) |
1 g/L |
5 Lugol's Iodine Plate
Yeast Nitrogen Base (without amino acids) |
6.7 g/L |
Glucose |
20 g/L |
Histidine |
50 mg/L |
Tryptophan |
50 mg/L |
Leucine |
50 mg/L |
Agar |
15 mg/L |
Lugol's Iodine Solution |
5 mg/L |
6 LB Medium
Yeast Extract |
5 g/L |
Peptone |
10 g/L |
NaCl |
10 g/L |
121℃、20 min灭菌后按需加入相应抗生素。
7 YPDA Medium
Yeast Extract |
10 g/L |
Peptone |
20 g/L |
Red Algal Polysaccharides |
25 g/L |
Glucose |
10 g/L |
Deionized Water |
1 L |
2.2 Plasmid Construction
1 PCR (Polymerase Chain Reaction)
Purpose:
Amplify target gene fragments using specific primers.
steps:
-
In a sterile PCR tube, add the following reagents in order:
DNA Template (50-200 ng)
0.5 μL
Forward Primer (10 μM)
0.4 μL
Reverse Primer (10 μM)
0.4 μL
High-Fidelity PCR Buffer (2X)
10 μL
ddH2O
9.1 μL
-
Place the tube in the PCR instrument for PCR amplification.
PCR thermal cycling conditions:
Step
Time(s)
Temperature(℃)
Cycle
Initial Denaturation
180
98
1
Denaturation
10
98
30
Annealing
5
58
30
Extension
30-180
72
30
Final Extension
600
72
1
2 Agarose Gel Electrophoresis
Purpose:
Separate and visualize DNA fragments by size; excise target bands.
steps:
Agarose Gel Preparation
- Weigh 0.4g agarose powder in a flask; add 50mL 1×TAE buffer.
- Heat in microwave with intermittent shaking until fully dissolved and clear.
- Cool solution to 50-60°C.
- Add 5μL Ultra GelRed dye; mix gently.
- Seal gel tray ends; insert comb.
- Pour solution into tray avoiding bubbles. Solidify at RT for 20-30 min.
Sample Loading Electrophoresis
- Remove comb and end seals after solidification.
- Place gel in tank with wells facing cathode.
- Add 1×TAE buffer to cover gel by 1-2mm.
- Load 5-10μL DNA samples mixed with loading buffer into wells. Include DNA ladder in one well.
- Run gel at 100V for 30 min.
- Stop when bromophenol blue reaches 2/3-3/4 gel length.
- Transfer gel to UV transilluminator; visualize and photograph bands.
- Excise target DNA fragments based on marker reference for purification.
3 DNA Purification and Recovery
Using SanPrep Column PCR Product Purification Kit (Cat. B518141-0100)
Purpose:
Remove enzymes, primers, and other impurities while concentrating target DNA to obtain high-purity templates for downstream experiments.
steps:
- Preparation: Ensure ethanol has been added to Wash Solution, and isopropanol to Buffer B3. Check for precipitation in Buffer B3.
- Add 5 volumes of Buffer B3 to the PCR reaction mixture and mix thoroughly.
- Centrifuge at 8,000 × g for 30 seconds. Discard the flow-through.
- Add 500 μL of Wash Solution, centrifuge at 9,000 × g for 30 seconds, and discard the flow-through.
- Repeat step 4 once.
- Centrifuge the empty column at 9,000 × g for 1 minute.
- Transfer the column to a clean 1.5 mL tube. Add 15–40 μL of Elution Buffer to the center of the membrane. Incubate at room temperature for 1 minute, then centrifuge for 1 minute. Collect and store the DNA solution.
4 Gibson Assembly
Using SanPrep Column PCR Product Purification Kit (Cat. B518141-0100)
Purpose:
Efficiently and accurately join multiple linear DNA fragments (e.g., target gene and linearized vector) into a complete circular recombinant plasmid in vitro.
steps:
- Prior to step 2, perform PCR and DNA purification for the target gene fragment.
- Measure concentrations of purified linearized vector and insert using a K5600C microspectrophotometer.
- Calculate molar concentrations based on measured concentrations and fragment lengths (bp).
- Precisely pipette calculated volumes of linearized vector and insert into a new sterile PCR tube or microcentrifuge tube; mix gently.
- Add an equal volume of Gibson Assembly Master Mix to the DNA mixture.
- Incubate at 50°C in a PCR instrument or water bath for 45 minutes.
5 Vector Transformation into E. coli DH5α Strain
Purpose:
Amplify plasmids efficiently using E. coli DH5α transformation and rapidly obtain positive clones via antibiotic selection.
steps:
- Thaw 50 μL of DH5α competent cells slowly on ice.
- Add 1–5 μL of ligation product or plasmid DNA to the cells; mix gently and incubate on ice for 5 minutes.
- Heat-shock at 42°C for 1 minute, then return to ice for 3 minutes.
- Under sterile conditions, spread the mixture directly onto an LB agar plate containing 150 μg/mL ampicillin.
- Incubate at 37°C for 12–15 hours (no satellite colonies observed). Pick colonies for verification by colony PCR.
6 Colony PCR
Purpose:
Rapidly and efficiently screen for positive E. coli clones containing the target agarase gene insert in the plasmid, rather than empty vector clones.
steps:
-
In a sterile PCR tube, add the following reagents in order:
DNA Template (50-200 ng)
5 μL
Forward Primer (10 μM)
0.2 μL
Reverse Primer (10 μM)
0.2 μL
High-Fidelity PCR Buffer (2X)
0.3 μL
ddH2O
4.3 μL
-
Place the tube in the PCR instrument for PCR amplification.
PCR thermal cycling conditions:
Step
Time(s)
Temperature(℃)
Cycle
Initial Denaturation
180
98
1
Denaturation
10
98
30
Annealing
5
58
30
Extension
30-180
72
30
Final Extension
600
72
1
2.3 Gene Expression
1 Episomal Plasmid Expression
-
Lithium Acetate Transformation Method
Purpose:
Efficiently introduce in vitro constructed recombinant plasmid DNA into engineered Saccharomyces cerevisiae cells.
steps:
- Pick a single colony from a solid plate and inoculate into YPD liquid medium; incubate at 30°C, 220 rpm for 16 h.
- Take 500 μL culture, centrifuge at 8000 rpm, and discard supernatant.
- Add sequentially: 3 μL of 10 mg/mL salmon sperm ssDNA (denatured at 95°C for 5 min and chilled on ice), 100 μL transformation mix (800 μL 50% PEG3350, 200 μL 2 mol/L LiAc, 7.5 μL β-mercaptoethanol, balance ddH₂O per 1 mL), and 0.1–1 μg plasmid; mix well.
- Incubate at 37°C for 30 min, centrifuge at 8000 rpm for 3 min, discard supernatant.
- Resuspend cells in 500 μL sterile water, plate 80 μL on uracil-deficient YNB plates, incubate at 30°C for 3–5 days.
-
Preliminary Verification by Lugol’s Iodine Plate Assay
Purpose:
Qualitatively and rapidly determine whether engineered yeast successfully secretes active extracellular enzymes for degrading red algal polysaccharides, based on clear hydrolysis zones around colonies.
steps:
- Inoculate a single colony of engineered strain into 5 mL uracil-deficient YNB liquid medium; culture at 30°C, 220 rpm for 16–24 h.
- Spot 2 μL culture onto Lugol’s iodine plates, incubate for 48 h, and observe clear zones. Undegraded areas appear dark blue.
-
Pre-treatment for Enzyme Activity Assay
- From a fresh plate (≤1 month old), pick a single S. cerevisiae colony and inoculate into 3 mL uracil-deficient YNB liquid medium; culture overnight at 30°C, 220 rpm to obtain primary seed culture in log phase.
- Inoculate 1% activated seed culture of 6 engineered strains into YPDA medium; after 96 h fermentation, collect broth for agarase and neoagarobiose hydrolase activity assays.
-
Agarase Activity Assay
Purpose:
Quantitatively evaluate the overall ability of extracellular agarase secreted by engineered strains to degrade agar polysaccharides into reducing sugars, for screening the most efficient degraders.
steps:
- Precisely weigh dried glucose standard and prepare a 1.0 mg/mL stock solution with deionized water.
- Prepare standard series in test tubes as follows:
Tube No.
Glucose Stock (mL)
Deionized Water (mL)
Glucose Content (μg)
0
0.0
1.0
0
1
0.2
0.8
200
2
0.4
0.6
400
3
0.6
0.4
600
- Add 1.5 mL DNS reagent to each tube, heat in boiling water bath for exactly 5 min, then immediately cool.
- Add 8.5 mL deionized water to each tube, mix well.
- Measure absorbance at 540 nm using Tube 0 as blank.
- Plot standard curve with glucose content (μg) as X and OD540 as Y. Obtain regression equation: Y = 1.391X - 0.07451 (R² = 0.9974).
Enzyme Activity Assay:
- Add 200 μL fermentation broth to 800 μL Tris-HCl buffer (pH 8.0) containing 0.3% w/v agar in a colorimetric tube. React with shaking at 40°C for 20 min.
- Add 1 mL DNS reagent, heat in boiling water bath for 5 min, cool, and dilute to 10 mL with distilled water. Mix well.
- Measure absorbance at 540 nm using inactivated enzyme as control. Calculate reducing sugar content using standard curve (Y=1.391X-0.07451, R²=0.9974).
Unit definition (U): Enzyme amount required to produce 1 μg reducing sugar per minute under above conditions.
-
Neoagarobiose Hydrolase Activity Assay
Purpose:
Specifically detect the efficiency of engineered strains hydrolyzing neoagarobiose (agar degradation product) into galactose, ensuring complete degradation of algal polysaccharides into utilizable monosaccharides.
steps:
- Dilute kit-provided galactose standard (100 mmol/μL) to 1 mmol/μL working solution using Assay Buffer.
- Take 10 μL working solution, add 990 μL Assay Buffer, mix thoroughly to obtain 10 nmol/μL diluted standard.
- Add reagents to wells as per table:
Tube No.
Glucose Stock (mL)
Deionized Water (mL)
Glucose Content (μg)
0
0.0
1.0
0
1
0.2
0.8
200
2
0.4
0.6
400
3
0.6
0.4
600
4
0.8
0.2
800
5
1.0
0.0
1000
- Then add sequentially to each well: 2 μL Galactose Probe, 2 μL Galactose Enzyme Mix, and 2 μL HRP.
- Incubate the reaction system at 37°C in the dark for 40 min.
- Measure the absorbance (OD₅₇₀) of each well at 570 nm.
- Plot the galactose standard curve with galactose content (nmol) as X and OD₅₇₀ as Y, obtaining the regression equation: Y = 0.07252X + 0.03044 (R² = 0.9945).
Galactose Standard Curve (Using Abcam Galactose Assay Kit):
Enzyme Activity Assay:
- Dilute the galactose standard (Abcam kit) to 1 nmol/μL: Add 10 μL of 100 nmol/μL galactose standard to 990 μL galactose assay buffer and mix thoroughly.
- Add 0, 2, 4, 6, 8, and 10 μL of the diluted standard to a series of wells. Adjust each well to 50 μL with galactose assay buffer, resulting in 0, 2, 4, 6, 8, and 10 nmol galactose standards per well.
- Plot the standard curve with galactose concentration (nmol) as X and OD570 as Y.
- Calculate galactose content in the fermentation broth using the standard curve (Y=0.07252X+0.03044, R²=0.9945).
- To 25 μL fermentation broth (using inactivated enzyme as control), add 25 μL of 2 mM neoagarobiose, 44 μL galactose assay buffer, 2 μL galactose probe, 2 μL galactose enzyme mix, and 2 μL HRP. Total reaction volume is 100 μL. Incubate at 37°C for 40 min.
- Measure absorbance at 570 nm.
Unit definition (U):Enzyme amount required to convert 1 μmol galactose per minute.
2 Genomic Integration Expression
CRISPR-Cas9 Plasmid Construction for Targeted Genomic Loci
Purpose:
Construct Cas9 plasmids expressing specific sgRNAs to create DNA double-strand breaks at specific yeast genomic loci, providing targets for subsequent homologous recombination and foreign gene integration.
steps:
- Use online tool CHOPCHOP (https://chopchop.cbu.uib.no/) to design efficient and low-off-target 20 nt sgRNA sequences for target genomic loci (e.g., GAL80, X-3).
- Amplify sgRNA fragment using p426-SNR52p-gRNA.csr-1.Y-SUP4t as template with primers sg-F and sg-R; amplify Cas9 fragment using Addgene SpCas9 plasmid as template with primers Cas9-F and Cas9-R. Mix sgRNA and Cas9 fragments at 1:1 molar ratio to assemble p426-PTEF1-SpCas9-TCYC1-PSNR52-sgRNA-TSUP4 plasmid.
- Use Cas9 empty vector (p426-PTEF1-SpCas9-TCYC1-PSNR52-sgRNA-TSUP4) as template and designed sgRNA sequence as 5' homology arm in primers for PCR linearization to obtain linearized vector backbone.
- Transform 100 ng linearized plasmid into E. coli DH5α competent cells after purifying the target gene fragment.
- Pick 3 positive transformants for culture, extract plasmids, and send for sequencing verification (e.g., Sangon Biotech) to obtain validated Cas9-sgRNA plasmids targeting the gene locus.
Donor DNA Preparation
Purpose:
Prepare linear DNA fragments containing the target gene and homology arms as repair templates for homologous recombination, guiding precise integration of foreign genes into specific genomic loci.
steps:
- Amplify target gene, promoter, terminator, etc., by PCR using yeast genomic DNA or plasmid as template.
- Assemble all elements using Gibson Assembly.
- Transform the assembled product into E. coli DH5α, screen positive clones using ampicillin resistance, and verify by colony PCR and sequencing.
- Amplify the correct construct using specific primers and purify the gene fragment with SanPrep Column PCR Product Purification Kit to obtain donor DNA.
-
Preparation of S. cerevisiae CEN.PK2-1D Competent Cells
Using ZYMO Frozen-EZ Yeast Transformation II Kit
Purpose:
Disrupt the cell wall barrier to enable efficient uptake of foreign DNA by S. cerevisiae for genetic modification.
steps:
- Inoculate CEN.PK2-1D strain in 10 mL YPD liquid medium. Incubate at 30°C with vigorous shaking (200-250 rpm) until mid-log phase (OD600 ≈ 0.8-1.0).
- Centrifuge at 500 × g for 4 min, discard supernatant. Resuspend cell pellet in 10 mL Solution 1, centrifuge again at 500 × g for 4 min, and discard supernatant to thoroughly wash cells.
- Add 1 mL Solution 2 to the washed cell pellet, resuspend completely by pipetting or vortexing. The resulting cell suspension is competent cells, ready for immediate transformation or freezing.
-
Primary Screening
Purpose:
Rapidly screen for positive clones with potential correct homologous recombination from a large number of transformants.
steps:
- Verify by colony PCR: Pick single colonies from uracil-deficient YNB plates, transfer to tubes containing PCR mix, and use GAL80 locus verification primers F and R to check target gene integration in the yeast genome.
-
Counter-Selection
Purpose:
Eliminate the URA3 selection marker gene from positive clones to obtain engineered strains containing only the target gene without exogenous markers.
steps:
- Inoculate transformants with correct primary screening bands into YPD liquid medium; incubate at 30°C, 220 rpm for 16 h.
- Spread onto solid YPD plates containing 1 mg/mL 5-fluoroorotic acid (5-FOA) for counter-selection. Perform PCR verification again on colonies growing on the plates; strains verified correctly indicate successful marker loss.
2.4Chemical Experiments & Process Optimization
1 Red Algae Hydrolysate Preparation
Purpose:
Mild hydrolysis of red algal powder using dilute HCl to convert hard-to-utilize polysaccharides into fermentable reducing sugars, providing a carbon source for yeast.
steps:
- Mix 5g algal powder with 0.1 mM HCl solution at 1:10 ratio (total volume 50 mL); react at 115°C for 15 min.
- After reaction, adjust hydrolysate pH to 7.0 using NaOH solution to suit yeast growth.
- Dilute the neutralized hydrolysate 1:1 with deionized water, use as YP fermentation medium in shake flasks.
- Measure initial reducing sugar concentration of diluted medium to assess carbon source content.
2 HPLC Analysis
-
Quantification of Squalene Accumulation
steps:
Squalene Standard Curve Preparation:
- Add 0.5 mL grinding beads to a disruption tube, then add 0.5 mL fermentation broth and 1 mL ethyl acetate.
- Disrupt cells using a Bioprep-24R instrument, then centrifuge at 12,000 × g for 1 min.
- Use a needle to aspirate the supernatant (ethyl acetate layer), attach a 0.22 μm organic solvent filter, discard the first few drops (~3 drops) to prime the filter and remove dead volume. Collect subsequent filtrate into clear HPLC vials for analysis.
- Precisely weigh 10.0 mg squalene standard (purity ≥95%), dissolve in ethyl acetate, and dilute to 10 mL in a volumetric flask to prepare 1.0 mg/mL stock solution.
- Perform gradient dilution of the stock solution with ethyl acetate to prepare a series of standard working solutions:
- Filter the upper ethyl acetate layer through a 0.22 μm membrane for HPLC analysis. Record the squalene chromatographic peak area for each concentration.
- Plot squalene concentration (μg/mL) as X and the measured average peak area as Y. Perform linear regression to obtain the equation: Y = 14498.99X + 387171.62, R² = 0.9992.
HPLC Conditions:
System: Shimadzu LC-16 with SPD-16 UV detector
Column: Agilent Poroshell 120 EC-C18 (2.1 × 100 mm)
Eluent: 100% acetonitrile
Flow rate: 0.5 mL/min
Injection volume: 2 μL
Detection wavelength: 210 nm
-
Detection of Rare Ginsenoside Rh1 Production
steps:
Rh1 Standard Curve Preparation:
- Precisely weigh 3.0 mg of 20(S)-Rh1 standard, dissolve in 1000 μL methanol to prepare a 3 mg/mL stock solution.
- Label 7 clean HPLC vials as 1-7.
- Pipette corresponding volumes of 3 mg/mL stock into each vial and add HPLC-grade methanol to adjust the total volume to 400 μL:
Tube No.
Stock (mL)
Methanol (μL)
Concentration (mg/mL)
1
4
396
0.01
2
10
390
0.025
3
20
380
0.05
4
40
360
0.10
5
100
300
0.25
6
200
200
0.50
7
400
0
1.00
- Filter the methanol layer through a 0.22 μm membrane for HPLC analysis. Record the Rh1 peak area for each concentration.
- Plot Rh1 concentration (g/L) as X and average peak area as Y. Perform linear regression to obtain the equation: Y = 3878X + 38658, R² = 0.9990.
Rh1 Quantification:
- Add 0.5 mL fermentation broth to a disruption tube containing 0.5 g of 0.5 mm glass beads and 1 mL n-butanol.
- Disrupt cells using a Bioprep-24R instrument, then centrifuge at 10,000 × g for 1 min.
- Filter the upper n-butanol layer through a 0.22 μm membrane for HPLC analysis.
HPLC Conditions:
System: Shimadzu LC-16 with SPD-16 dual-wavelength UV detector
Column: Neptune 5u C18 (250 × 4.6 mm)
Mobile phase: Water/acetonitrile
Detection wavelength: 203 nm
Column temperature: 35°C
Gradient elution: 0-6 min (40-100% B), 6-18 min (100% B), 18-25 min (100-40% B), 25-35 min (40% B)
3 Determination of Liquefaction Conditions
Purpose:
High concentrations of red algal polysaccharides increase medium viscosity, inhibiting strain growth. Determine the specific conditions for liquefaction using low HCl concentrations.
Steps:
- Treat 25 mL YPDA medium with HCl gradients (0.001-0.01 M) at 121°C for 20 min.
- Analyze by HPLC to detect neoagarobiose and monosaccharides.
4 Orthogonal Experiment: Red Algal Polysaccharide & Glucose Concentrations
Purpose:
Determine the optimal ratio of red algal polysaccharides to glucose in the medium for squalene production by engineered strain Sq-Ag5.
Steps:
- Prepare YPDA liquid media with glucose concentrations (0, 2.5, 5, 7.5, 10 g/L) and red algal polysaccharide concentrations (10, 15, 20, 25, 30, 40 g/L).
- Inoculate 1% (v/v) primary seed culture into 250 mL flasks containing 25 mL YPDA medium. Ferment at 30°C, 220 rpm for 96 h.
- Measure squalene content in fermentation broth by HPLC to determine the optimal carbon source composition.